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Chapter 1 

 

1. Introduction 

A good part of understanding and impression of the world is based on our sense of vision. 

Nevertheless, the mechanics that enable vision are not obvious even for the experienced 

researcher. How do we understand shape? How do we understand the objects’ 

movement? Looking around and recognizing a face or admiring details of a landscape is 

an amazing accomplishment that is more difficult to achieve than e.g. the mind 

processing needed to play chess. 

Until recently, the function of the human vision was compared to that of a photo-

camera [Kandel et al., 1995]: The crystalline eye lens focalize an inverse object’s image 

on the retina, exactly as the lens of a photo-camera. This theory is easily understood to be 

unsatisfactory, by realizing that under this model assumption a central vision function 

cannot be explained, namely the depth (3-D) understanding of the surroundings. 

Additionally, the image projected to the retina is not informative enough to justify our 

ability to recognize objects under varying illumination conditions.  

Even the state of the art vision systems are not able to imitate the human vision. 

Most of them are nearly efficient in controlled environments or require human 

interaction. In this thesis, we consider and discuss the concept of motion. The ability to 

understand the moving world is essential to our survival and is taken as granted for us. If 

we want to create autonomous platforms (robots) that interact with their environment in 

an intelligent way, then we have to make them understand motion.  

This chapter outlines concepts related to motion in computer vision and gives a brief 

overview of our approach. We attempt to represent motion in the sequences with possible 

application in low/high level video segmentation. It is said that a picture is worth a 

thousand words. If this is correct, we can hardly imagine the worth of a sequence of 

images… 
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1.1 Motion & Computer Vision 

For many users, video is synonymous to television and motion pictures. But, in recent 

years, we have witnessed the increasing popularity and use of video in and beyond the 

realms of entertainment, in the form of home movies, education and training, internet, 

interactive TV. Video sequences and their ability to represent evolution over time are also 

widely used in medical applications. Great research has been directed towards effective 

machine vision using motion as the main cue. Video databases are huge and therefore 

efficient retrieval techniques have become a great challenge. Video retrieval involves 

content analysis and feature extraction, indexing and querying. Generally, digital video 

segmentation can be defined as the problem of automatically analyzing video content into 

meaningful and manageable component units, which may be individual objects or 

reasonable scenes. 

Motion plays an important role in our visual understanding of the surrounding 

world. The moving objects are precisely the interesting objects that help us understand 

the situation. It is needless to say that knowing that “something” is moving in a particular 

way is often much more important than knowing what this object actually is. Obviously, 

motion is an informative property and should be incorporated in any machine vision 

application attempting to achieve a more human-like vision. Video sequences introduce a 

third dimension to the static world of 2D image space that can be directly related to 

motion, namely time. The translation of objects over time gives us the impression of 

movement. The notion of motion in image sequences and the attempt to recover is 

important for both low- and high- level processing. For example, low level processing is 

related to predictive coding that is widely used in video compression and is mainly based 

on the temporal redundancy inherent in the batch of available images. Additionally, a 

close representation of the true underlying motion can help us decompose the sequence 

into coherently moving objects and understand their interactions. The latter is related to 

high level processing. 

1.1.1 Applications 

As indicated before, motion is useful in many computer vision and video analysis tasks. 

A representative set of applications is given below: 
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• Video Coding. A sequence of pictures can occupy a vast amount of storage space 

when represented in digital form. For example, suppose the pictures in a sequence are 

digitized as discrete grids or arrays with 360 pixels per raster line and 288 

lines/picture, a resolution that is typical for MPEG. Assuming the picture sequence is 

in color, a three-color separation (red, green, blue) can be used for each picture. If 

each color component in the separation is sampled at a 288360×  resolution with 8-

bit precision, each picture occupies approximately 311 Kbytes. If the moving pictures 

are represented uncompressed at 24 frames/s, the raw data rate for the sequence is 

about 60Mbit/s, and a one-minute video clip occupies 448Mbytes! A very important 

part of many coding schemes, with MPEG being one of them, is motion 

compensation. Pixels in a region of a reference picture are used to predict pixels in a 

region of the current frame based on their motion pattern. Differences between the 

reference picture and the current picture are then coded to whatever accuracy is 

affordable at the desired bitrate. Therefore, determining which areas of the image are 

moving and their motion pattern are crucial tasks. [Mitchel et al., 1997] 

 

• Robotic Vision. Motion is a valuable source of information for autonomous robots to 

navigate and interact with their environment (obstacle avoidance, path planning etc). 

In cases where direct control by a human is not possible, the visual sensor and the 

computed motion are perhaps the main sources of information used to achieve 

autonomy. Although navigation is a hard task, there are several techniques developed 

for “constrained” environments: Robotic arms can perform specific operations on 

objects passing by on a conveyor belt based on video camera input [Lewis et al., 

1993]. Autonomous vehicles are capable of following a road based on specific 

features extracted from visual processing [Giachetti et al., 1998; Leuven et al., 2001] 

 

• Video Indexing. Digital video indexing techniques are becoming increasingly 

important with the recent advances in very large scale integration technology (VLSI), 

broadband networks (ISDN, ATM) and video compression standards. The goal of 

video indexing is to develop techniques that provide the ability to store and retrieve 
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video sequences based on their content. Few of the potential applications of video 

indexing are: multimedia information systems [Docherty et al., 1991], digital libraries 

[Digital libraries, 1995], remote sensing and natural resource management [Ehlers et 

al., 1989], movie industry and video on demand [Little et al., 1993]. A video stream 

is composed of video elements constrained by the spatiotemporal piecewise 

continuity of visual cues. The normally visual motion becomes suddenly 

discontinuous in the event of new activities or scene changes. Hence, motion 

discontinuities may be used to mark the inception of a new activity or the change of a 

scene. [Mandal et al., 1999] 

 

• Super Resolution. The large overlap between successive frames and regions in the 

scene is used to achieve images with a higher spatial resolution. The process of 

reconstructing a high-resolution image from several images covering the same region 

in the world is called Super Resolution. If a good model of possible degradation is 

defined, the various moving regions and their approximate motions are accurately 

computed, a super resolution image can be reconstructed [Irani et al. 1993]. 

 

• Medical imaging. The interpretation of symptoms or the diagnosis of a doctor can be 

greatly assisted by motion analysis. It can be used, for example, to monitor the heart 

movement from MR imagery [Funkalea et al., 1996] or to interpret ultrasound scans 

[Quistgaard, 1997]. 

1.1.2 Compressed Domain 

With rapid advances in communication and multimedia computing technologies, the 

mass amounts of data associated with visual information are a reality on the information 

highway. As the amount and complexity of video information grow, the need for efficient 

compression becomes obvious. Video compression is concerned with the reduction of 

bits required to store or transmit images under the constraint of achieving some target 

quality. Motion compensation plays an important role as indicated in the previous 

section. 
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 MPEG compression is widely accepted as a video compression standard and it is 

adopted for several applications. The MPEG stream carries both motion and intensity 

information of the underlying scene. Motion is represented by a field of motion vectors 

and intensity by a set of discrete cosine transform (DCT) coefficients. More details 

regarding the standard will be given at chapter 2. Processing in the compressed domain 

reduces the amount of effort involved in full decompression and keeps the storage cost 

low. In our approach, we only use information that is available in the compressed stream. 

1.2 Optical Flow 

Dynamic image analysis has focused research on the understanding of motion analysis 

and representation. The previous discussion outlines and explains the apparent 

importance of motion in computer vision applications. Although a great amount of work 

on motion representation has been published, the motion characteristics of objects and 

how to represent them is still a challenging issue. 

As a camera moves, the images of the objects move on the focal plane too. Their 

motion is the projection of the 3-D motion with respect to the camera coordinate system. 

Optical flow, or “projected motion”, is the (perspective or orthographic) projection of this 

3-D motion in real world scene on the 2-D image plane. The motion field [Horn, 1986] is 

the field in the image plane that is associated with the spatiotemporal variations of 

intensity pattern. For most applications, the world has enough structure and the recovered 

optical flow provides a good approximation to the motion field. If this were not the case, 

then humans would not be able to perceive motion. 

In this thesis, we are dealing with two groups of motion estimation algorithms, 

namely the gradient-based and block matching motion estimation techniques. The main 

idea under the gradient-based methods is that the optical flow field can be estimated from 

the spatiotemporal image gradients by using an appropriate smoothness constraint [Horn 

et al., 1981]. The optical flow is recovered by minimizing a functional on the 

spatiotemporal variation of data with the additional smoothness constraint. These 

methods are referred to as regularization techniques. The assumption of block-matching 

techniques is that the pixels of a small image block exhibit the same motion from frame 

to frame. Therefore, the same motion vector is assigned to all pixels within this block. 
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The motion vectors are chosen so that they either maximize correlation or minimize error 

between a block and a corresponding array of pixel values in a reference frame. 

1.2.1 Constraints on Motion 

Regularization techniques are based on assumptions about the objects’ motion. These 

assumptions are usually ideal and are often violated in real scenes. They are expressed as 

constraints on the objective function. 

Three motion constraints are often used in the literature, namely the data, 

smoothness and temporal constraints. The data constraint (or brightness/intensity 

conservation) states that the intensity measurements corresponding to a surface change 

slowly over time. The smoothness constraint (or spatial coherence) states that the surfaces 

have spatial extent and hence neighboring points on a surface will have similar motion. 

The temporal constraint (or temporal coherence/continuity) is based on the fact that the 

velocity of a surface changes gradually over time.  

1.3 Problems in Motion Analysis 

All motion analysis and representation algorithms face common problems that arise 

mainly from the 3-D to 2-D projection of the real motion field. The most important of 

them are briefly reviewed below. 

Fig. 1.1 Aperture Problem: Although the gray rectangle is moved upwards we 
cannot observe it through the small square (aperture)
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 When the gray level variation in the image does not uniquely constrain the 

functional to be minimized, i.e. more than one candidate motion fits the functional 

equally well, the aperture problem occurs. To illustrate this further let us study a simple 

example. In Fig. 1.1, a gray rectangle moves upwards and we observe it through the small 

square aperture. Although the gray rectangle moves upwards, we cannot recognize its 

motion through the small aperture. In the contrary, if we observe the movement through 

an aperture located at a corner, we can recognize the motion accurately. Indeed, optical 

flow is best determined at the corners, i.e. when there is enough gray scale variation. 

 Motion discontinuities form another difficulty for the motion estimation 

algorithms. When a depth discontinuity occurs in the scene, e.g. overlapping objects or 

abrupt direction change, several points in the 3-D are projected to the same point in the 2-

D space. This is called a spatial motion field discontinuity. In this case, a common 

assumption, namely the single motion of small regions, is violated and the correct 

recovery of the velocity becomes difficult. Most algorithms estimate an averaged motion 

at these problematic regions, which results in inaccurate optical flow. 

 Temporal discontinuities can also occur due to occlusions/disocclusions of objects 

or change of scene. In these cases, there is no data correspondence between neighboring 

frames and therefore the optical flow is undefined. Motion has to be derived by other 

means in these areas, for example using a three-frame matching, making the solution 

difficult and perhaps not efficient. 

1.4 Approach 

In this thesis we propose an algorithm for optical flow estimation that is thoroughly based 

on information that us directly available in the compressed domain. Hence, we preserve 

the advantages of compressed domain processing and improve the existent MPEG 

velocity field in terms of accuracy and density (1 motion vector/pixel). 

We address the issues of robust, incremental, dense optical flow estimation by 

combining information from two different velocity fields: the available MPEG motion 

field that is generated by a block-matching and the generated motion field by a robust 

regularization technique. The regularization technique is based only on information that 

is directly available in the compressed stream avoiding therefore the time and memory 
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consuming decompression. Both motion estimation techniques, namely the block-

matching and gradient-based, have their own problems in regions with specific 

characteristics (homogenous, noisy, with motion borders etc). We attempt to develop an 

efficient method that combines only their advantages over these regions in order to 

recover the true underlying motion as correct as possible. 

 Our work can be seen as an extension of Black & Anandan’s work [Black et al., 

1996] towards dense optical flow recovery in compressed video and use of additional 

constraints on image motion. The robust estimation framework for motion estimation was 

first explored by Black & Anandan in an earlier work [Black et al., 1993]. We use their 

formulation and incorporate new terms in the objective function by using the MPEG 

motion field and exploiting temporal information in a different way. 

1.5 Thesis Overview 

The rest of this thesis is devoted to describe the previously published work, to introduce 

and explain the necessary mathematics and examine in detail the developed approach. 

Chapter 2. The MPEG standard and its components are reviewed. The extraction 

and manipulation of information that is available in the MPEG video without the need of 

full decompression, namely the DC coefficients and the motion vectors, is considered. 

Chapter 3. The most popular techniques for motion estimation with emphasis on 

intensity differential and block matching techniques are examined. Constraints on motion 

(data conservation, spatial coherency and temporal continuity) are presented under a 

least-squares regularization formulation. Additionally, coarse-to-fine methods designed 

to compensate for large displacements are discussed. Constraint violations and the 

aperture problem are also elaborated. 

Chapter 4. Robust statistics are briefly reviewed and the robust optical flow 

estimation framework used by [Black et al., 1996] is presented. The minimization 

technique is described and provided in terms of pseudocode.  

Chapter 5. In this chapter, we elaborate on dense optical flow recovery using 

robust regularization based on the DC coefficients and the motion vectors of the MPEG 

stream. New constraints on the objective function are introduced and ideas regarding 
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current and future work are discussed. The developed approach is systematically 

presented. 

Chapter 6. Experimental results are presented and several problematic cases are 

illustrated. Improvements of our approach over OFC and MPEG fields are shown and are 

analyzed using various examples. 

Chapter 7. Evaluation and discussion of our approach is attempted along with 

possible future directions. 
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Chapter 2 

 

2. MPEG Information Extraction & Motion 

Vectors Manipulation 

Recent advances in multimedia compression technology, coupled with the significant 

increase in computer performance and the growth of the Internet, have led to the 

widespread use and availability of digital video. Applications such as digital libraries, 

distance learning, video-on-demand, digital video broadcast, interactive TV, multimedia 

information systems generate and use large collections of video data [Docherty et al., 

1991; Digital libraries, 1995; Bhatt et al., 1997; Chang et al., 1997. This has created the 

need for tools that can efficiently classify and retrieve relevant material. Automatic 

classification of video sequences would increase usability of these masses of data by 

enabling people to search quickly and efficiently multimedia databases.  

There are three main sources of information in video: first the audio; secondly the 

individual images which can be classified by their content; thirdly, the dynamics of the 

image information held in the time sequence of the video. It is the last attribute that 

makes video classification different from image classification. The most successful 

approaches to video segmentation/classification are likely to use a combination of static 

and dynamic information. 

Two forms of dynamic information can be identified: foreground and background 

motion. The foreground motion is related to object motion, while the background motion 

is related to camera motion. A complete video processing system should separate these 

two motion signals in order to assess the classification potential of each one individually. 

Currently, a large part of video material is in compressed form due to recent 

advances in video compression (H.261, MPEG). For compressed video, processing 

typically starts with decompression. Operations on fully decompressed or uncompressed 

video do not permit rapid processing because of the data size. It is thus advantageous to 
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develop algorithms to operate directly on compressed data without having to first perform 

full frame decompression. In this thesis, we present a technique for recovering optical 

flow for MPEG sequences. Information that is available in the MPEG video, without the 

need of full decompression, is combined with gradient information form the DC images 

to achieve this task. More details will be given in the next chapters. The following 

sections briefly review the MPEG standard and describe the techniques for DC & Motion 

Vectors extraction and manipulation. 

2.1 Video Compression & MPEG Coding 

Video sequences contain a significant amount of data redundancy within and between 

frames. The ultimate goal of video source coding is the bit-rate reduction for storage and 

transmission by exploring the redundancies to perform encoding of only a "minimum set" 

of information using entropy-coding techniques. This usually results in a compression of 

the coded video data compared to the original source data. The performance of video 

compression techniques depends on the amount of redundancy contained in the image 

data as well as on the actual compression techniques. 

The coding of the video data may be "lossless" or "lossy" depending on the 

application. The input to the data compressor is usually called source data and the output 

of decompression forms the reconstructed data [Mitchel et al., 1997]. Some compression 

techniques are designed such that reconstructed data and source data exactly match, and 

these techniques are called “lossless”. Other techniques provide only good (hopefully) 

approximations to the source data, something relevant to the MPEG video standards. 

These techniques are called “lossy”. The aim of lossy techniques is to optimize image 

quality for a specific target bit rate subject to given optimization criteria. The next 

subsections introduce the basic aspects of the MPEG video standard. Information is 

mainly drawn from [Mitchel et al., 1997; ISO/IEC, 1993; ISO/IEC, 1996] 

2.1.1 The MPEG Model 

The key aspect of moving picture compression is the similarity between pictures 

in a sequence. This similarity is “expressed” by statistical redundancies in both temporal 

and spatial directions. The discrete cosine transform (DCT) is used to compensate for 
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spatial redundancy, while a motion compensation (MC) scheme based on a block 

matching method compensates for the temporal redundancies. An entropy encoder is used 

afterwards to code the generated symbols from the encoder model in a process that 

minimizes the bitstream length in a statistical sense. The basic statistical property upon 

which MPEG compression techniques rely is inter-pixel correlation, including the 

assumption of simple translatory motion between consecutive frames. Thus, it is assumed 

that the magnitude of a particular image pixel can be predicted from nearby pixels within 

the same frame (using Intra-frame coding techniques) or from pixels of a nearby frame 

(using Inter-frame techniques). High compression needed by MPEG applications is 

achieved by coding most of the pictures as differences relative to neighboring pictures 

(Inter-frame compression): The parts of the image that do not change significantly are 

simply copied from other areas or other frames. Other parts may be best predicted by 

parts of the image that are displaced because of motion. The latter requires the use of 

motion compensation to capture temporal redundancy. Intuitively it is clear that under 

some circumstances, i.e. during scene changes of a video sequence, the temporal 

correlation between pixels in nearby frames is small or even vanishes - the video scene 

then assembles a collection of uncorrelated still images. In this case, Intra-frame coding 

techniques are appropriate to explore spatial redundancy in each image in order to 

achieve efficient data compression.  

The smallest image unit of MPEG coding is a block. A block represents an 88×  

pixel group of the original image. The MPEG family algorithms employ block-based 

compression by applying the DCT on image blocks. In case of intra-frame compression 

the result is similar to JPEG compression. The basic building block of an MPEG frame is 

the macroblock (MB). The MB consists of a 1616×  array of luminance (grayscale) 

samples together with one  block of samples for each of two chrominance (color) 

components. The  sample array of luminance samples is actually composed of 

four  blocks of samples. 

88×

1616×

88×

Under these guidelines, an MPEG stream consists of three types of pictures: I, P 

and B. Intra (I) frames provide random access points into the compressed data and are 

coded using only information present in the picture itself by the DCT, quantisation and 

Huffman entropy coding. As indicated, the DCT is responsible for reducing spatial 
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redundancy of the picture to be encoded. The DCT does not directly reduce the number 

of bits required to represent the block. The reduction in the number of bits follows from 

the observation that, for typical blocks from natural images, the distribution of 

coefficients is non-uniform. The transform tends to concentrate the energy into the low-

frequency coefficients and many of the other coefficients are near zero. The bit rate 

reduction is achieved by not transmitting the near-zero coefficients and by quantising and 

coding the remaining coefficients as described below. The non-uniform coefficient 

distribution is a result of the spatial redundancy present in the original image block. The 

function of the coder is to transmit the DCT block to the decoder in a bit rate efficient 

manner, so that it can perform the inverse transform to reconstruct the image. It has been 

observed that the numerical precision of the DCT coefficients may be reduced while still 

maintaining good image quality at the decoder. Quantisation is used to reduce the 

number of possible values to be transmitted, reducing the required number of bits. The 

degree of quantisation applied to each coefficient is weighted according to the visibility 

of the resulting quantisation noise to a human observer. In practice, this results in the 

high-frequency coefficients being more coarsely quantised than the low-frequency 

coefficients. Note that the quantisation noise introduced by the coder is not reversible in 

the decoder, making the coding and decoding process 'lossy'.  

The serial arrangement and coding of the quantised DCT coefficients exploits the 

likely clustering of energy into the low-frequency coefficients and the frequent 

occurrence of zero-value coefficients. Each block is scanned in a diagonal zigzag pattern 

starting at the DC coefficient to produce a list of quantised coefficient values, ordered 

according to the scan pattern. The list of values produced by scanning is entropy coded 

using a Variable-Length Code (VLC). Variable length codes are needed to achieve good 

coding efficiency, as very short codes must be used for the highly probable events. The 

VLC allocates code words, which have different lengths depending upon the probability 

with which they are expected to occur. To enable the decoder to distinguish where one 

code ends and the next begins, the VLC has the property that no complete code is a prefix 

of any other. Huffman coding is used to generate the tables of variable length codes 

needed for this task. 
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The first DCT coefficient of each block is called DC term and is 8 times the 

average intensity of the respective block. P (predicted) frames are coded with forward 

motion compensation using the nearest previous reference (I- or P-) images. Bi-

directional (B) pictures are also motion compensated, this time with respect to both past 

and future reference frames. For each MB of the current frame, the encoder finds the best 

matching block in the respective reference frame(s), calculates and DCT-encodes the 

residual error and transmits one or two motion vectors, see Fig. 2.1(a), (b). During the 

encoding process, a test is made on each MB of P and B frame to see if it is more 

expensive to use MC or intra- coding. The latter occurs when the current frame does not 

have much in common with the reference frames. As a result, each MB of a P frame 

could be coded either intra or forward while for each MB of a B frame there are four 

possibilities: intra, forward, backward or interpolated. Interpolated motion-compensated 

prediction is achieved by the simultaneous use of both forward and backward motion-

compensated prediction. The prediction is a simple average of the pixel values from the 

forward and backward motion-compensated reference pictures. A possible reason for 

using interpolated prediction is to average the noise in the two reference pictures, thereby 

improving the prediction. 

 

(a) (b) 

Fig. 2.1 (a) Forward prediction for P frames; (b) Interpolated prediction for B frames; 
figure from [Koprinska et al., 2001] 
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2.1.2 Motion Compensation 

Motion compensated prediction is a powerful tool to reduce temporal redundancies 

between frames and is used extensively in MPEG video coding standards. The concept of 

motion compensation is based on the estimation of motion between frames, i.e. if all 

elements in a video scene are approximately spatially displaced, the motion between 

frames can be described by a limited number of motion parameters (i.e. by motion 

vectors for translatory motion of pixels). In this simple example, the best prediction of an 

actual pixel is given by a motion compensated prediction pixel from previously coded 

frames. Usually both, prediction error and motion vectors, are transmitted to the receiver. 

A trade-off must be made between the accuracy in predicting complex motion in the 

image and the expense of transmitting the motion vectors. Smaller regions require more 

complex estimation incorporating techniques such as noise smoothing. To this end, 

images under the MPEG format are separated into disjoint macroblocks (MB) of pixels 

(i.e. 16x16 pixels in MPEG-1 and MPEG-2 standards) and only one motion vector is 

estimated, coded and transmitted for each of these macroblocks.  

P- picture 

Reference picture for forward 
prediction 

time 

Fig. 2.2 P- picture motion vector displacements. Positive displacements are to the 
right and down, relative to the macroblock being coded. [Mitchell et al., 1997] 
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 The P- frames use forward motion-compensated prediction, so named because the 

predicted pixels are projected forward in time from earlier I- or P- frames in the sequence 

(Fig.2.2). Each MB has one MV associated with it. 

 B-frames may use either forward or backward motion-compensated prediction or 

both (Fig. 2.3). In backward motion-compensated prediction the reference picture occurs 

later in the sequence. Forward motion-compensated prediction is done much the same as 

in P- frames. 

Reference picture for 
backward prediction 

B- picture 

Reference picture for forward 
prediction 

time 

Fig. 2.3 B- picture motion vector displacements. Positive displacements are to the right and 
down, relative to the macroblock being coded. [Mitchell et al., 1997] 
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2.2 DC Extraction 

The Discrete Cosine Transform (DCT) is an essential part of the MPEG standard. It is 

used as the basis of compression for I frames and of the residue images from P and B 

frames. The MPEG uses a 2-D 8x8 DCT for each block. The forward and reverse DCT 

are defined as: 

 ∑∑
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where u, v are the horizontal and vertical frequency indices, respectively, and the 

constants, C(u), C(v), are given by: 

    
2

1)( =uC , if u=0 

    1)( =uC , if u>0 

DCT coefficients are ordered using a zigzag traversal pattern, run length and then 

Huffman coded [Mitchell et al., 1997]. 

 Given an image f of size MN × we define a DC image fDC to be a reduced one of 

size 33 22
MN

× . Therefore, the image fDC is reduced 8 times in each direction. This 

corresponds to using one pixel to represent an 88× block. Every pixel of the derived 

image equals the DC coefficient, F(0,0), of each block. A DC sequence is a sequence of 

such DC images. Although much smaller than f, the fDC and consequently the DC 

sequence retain a significant amount of global information present in the scene. 

 The DC is coded in a different way than the rest DCT coefficients in order to be 

more easily accessible. Therefore, after the DC coefficient of a block has been quantised 

to 8 bits, it is coded losslessly by a differential pulse coded modulation (DPCM) 

technique. In this coding technique, a difference is calculated between each pixel and a 

prediction calculated from neighboring pixel values already transmitted. At the decoder, 

the original quantised DC values are exactly recovered by following the inverse 

procedure. 
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 DCT coefficients are readily accessible for I frames, but they must be estimated 

for P and B frames. To calculate them, the DCT coefficients of the area of the 

reference frame that the current block was predicted from need to be calculated. Since the 

DCT is a linear transform, the DCT coefficients of this reference MB in the reference 

frame can be calculated from the DCT coefficients of the four MBs that overlap this 

reference MB as shown in Fig. 2.4, albeit with substantial computational expense. Yeo & 

Liu proposed a technique for calculating reasonable approximations to the DC 

coefficients of a MB of a P or B frame. We adopt their method and provide a short 

description of their work. More details can be found in [Yeo et al., 1995a]. 

1616×

x, y

P4P3

P2P1

PRef

W4W3

W2W1

Current 
Block 

Fig. 2.4 Reference block (PRef), motion vector and original blocks. 

 To reduce the computation of reconstruction of DC values they propose two 

methods, to be called zero-order and first-order approximations. For the zero-order 

approximation, they take the DC value from the block, which has the most overlap with 

block Pref (see Fig. 2.4). For the first order approximations they weigh the contributions 

from the 4 neighboring DC values with the ratio of the overlaps of the block Pref with 

each of the block P1,…,P4: 

    ,        (2.3) ∑
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where wi is the ratio of the area of the shaded region of Pi to its total area, as shown in 

Fig. 2.4. If a MB of a B frame is interpolated from two reference MBs, its DC coefficient 

is approximated by an average of the estimated DC coefficients of each of these two 

MBs. Fig 2.5 and Fig. 2.6 shows images at their original resolution and the corresponding 
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first order DC images. Additionally, Fig. 2.6 shows a DC image spatially scaled to the 

uncompressed frame’s dimensions, in order to get a visual grip of the information loss in 

such an image. 

 

Fig 2.5 Original image and first-order DC image 
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 26Fig 2.6 Original image; first-order DC image; DC image spatially scaled to 
uncompressed frames dimensions

 



2.3 Motion Vector Extraction & Manipulation  

As indicated in section 2.1, the frames of a MPEG video stream may be of different 

types, i.e. I-, P or B-, and can occur in a variety of GOP (Group Of Pictures) patterns. An 

I frame has no motion vectors assigned to it in contrast to P (one MV max for every MB) 

or B (two MVs max for every MB) frames.  

 We adopt the approach of Kobla et al. [Kobla et al., 1997] to produce a unified 

set of motion vectors that is independent of the frame type and the direction of prediction. 

Their method represents each motion vector as a backward predicted vector with respect 

to the next frame, independently of frame type. In other words, the motion vectors of 

each frame represent the direction of motion of each MB with respect to the next frame. 

 The method recovers the flow between every pair of frames by treating every pair 

according to its type. There are seven possible types, namely IP, which is an I frame 

followed by a P and PP, IB, PB, BI, BP, BB combination. For IP or PP the flow is 

derived as follows:  The flow for the first frame is simply the set of forward predicted 

motion vectors of the following P frame after inversion. In other words, if a MB in the P 

frame is displaced by a motion vector (x, y) with respect to a MB in the I or P frame, then 

it is logical to conjecture that the latter MB is displaced by a motion vector (-x, -y) with 

respect to the MB in the P frame. For clips containing B frames let us consider two 

consecutive reference frames, Ri and Rj. If the B frames between them are denoted by 

B1,…,Bn, where n is the number of B frames between the reference ones, then we have the 

following options: 

• RiB1: The flow for Ri is derived by using the inverse forward predicted motion 

vectors of B1. 

• BnRj: The flow for Rj is derived by using the backward predicted motion vectors 

of Bn. There is no need to invert he motion vectors here. 

• If a MB in a B frame does not have a forward or backward motion vector we look 

at successive/preceding B frames till we find a corresponding MB in frame Bk 

with valid forward/backward motion vector. Since this vector is predicted from k 

frames earlier/after, we scale it down by k. 

• BB: Obviously, there is no direct interaction between consecutive B frames. 

Flow between successive B frames is derived by analyzing corresponding MBs in 
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those B frames and their motion vectors with respect to their reference frames. 

Since each MB in each B frame can be any of three types, namely, forward-

predicted (F), backward-predicted (B) or bidirectionally-predicted (D), there exist 

nine possible combinations; FF, FB, FD, BF, BB, BD, DF, DB and DD. Each of 

these nine combinations is considered individually. 

 

 More details about the uniform motion vector representation can be found in 

[Kobla et al., 1997]. 
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Chapter 3 

 

3. Estimating Optical Flow 

Optical flow is a 2D motion measure, which has a wide range of applications in computer 

vision, video coding and computer graphics. Its efficient estimation is a hard task and has 

been studied widely during the last decades. A host of different motion estimation 

algorithms have been proposed based on different ideas. They fall broadly into three 

categories: 1) Gradient-based methods that use spatial and temporal derivatives at each 

point in the image and impose some further constraint to uniquely identify the motion. 2) 

Region-matching methods, in which the displaced-frame-difference (DFD) or some 

similar error criterion is minimized over a set of local regions by employing an 

appropriate form of search mechanism. 3) Pel-recursive methods that are iteratively 

refining motion estimation for individual pixels by gradient techniques. They involve 

more computational complexity and less regularity. 

Gradient-based estimation has become very popular in computer vision 

applications. The main reasons are that it can be computationally efficient and produces a 

dense (one MV/pixel) motion field estimate. Such methods require motion constraints 

that can be classified as global or local in nature. Therefore, the optical flow estimation is 

often expressed as a global optimization problem that involves local or global constraints, 

where the issue is to find a global minimum of a cost function (or energy) involving the 

data and the “hidden” variables of interest to be extracted from the data. Usually, a first 

part of the energy expresses the interaction between the unknown variables and the data 

(observation), while the second one captures some kind of prior knowledge (prior) about 

the unknown motion field. The essential role of the second part is to regularize and 

constrain the first one. Such approaches give rise to the so-called regularization 

techniques that have received a great deal of attention. 

 Three motion constraints are often used in the literature, namely the data, 

smoothness and temporal constraints. The data constraint (or brightness/intensity 

 29



conservation) states that the intensity measurements corresponding to a surface change 

slowly over time. The smoothness constraint (or spatial coherence) states that the surfaces 

have spatial extent and hence neighboring points on a surface express similar motion. The 

temporal constraint (or temporal coherence/continuity) is based on the fact that the 

velocity of a surface changes gradually over time.  

The following sections examine the most popular techniques for motion 

estimation with emphasis on intensity differential and block matching techniques. 

Additionally, coarse-to-fine methods designed to compensate for large displacements are 

discussed in section 3.1.5. The latter topic will be explored in more detail at the next 

chapter. Constraint violations and the aperture problem are also elaborated in section 3.3. 

Ad hoc techniques using a robust estimation framework are examined at the next chapter.  

3.1 Intensity-based differential methods 

Differential techniques compute image velocity from spatiotemporal derivatives of image 

intensities. The image domain is therefore assumed to be differentiable in space and time. 

The most popular methods use additional information like smoothness regularization or 

temporal coherence terms to increase solution accuracy and computational efficiency. 

Such constraints are often violated in real sequences. A robust, in terms of efficient 

results, technique should take into account these violations and compensate for them in 

order to produce a “good” motion field estimate. 

The following three sections provide information regarding the nature of the 

constraints used in optical flow estimation. Section 3.2.4 reviews the techniques used so 

far. 

3.1.1 Optical Flow Constraint Equation (OFCE) 

The usual starting point for velocity estimation is to assume that the intensities are shifted 

(locally translated) from one frame to the next, and that the shifted intensity values are 

conserved, i.e. 

)δt tδt,,δt(),,( +++≈ vyuxItyxI ,     (3.1) 
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where1 u, v denote the horizontal and vertical optical flow vector components and δt is 

small. This constraint implies that the intensity of a moving point in the image plane 

remains constant along the trajectory of the point in time as shown in Fig. 3.1. It is 

needless to say that such an assumption is only approximately true in practice. Methods 

making direct use of this constraint in areas of the image are called matching-based. Due 

to computational difficulties, they can yield unsatisfactory accuracy [Barron et al., 1994]. 

For this reason gradient-based methods have become popular. They use the Taylor Series 

approximation of (3.1) and yield: 

Fig. 3.1 Data Conservation: Although it has moved, the highlighted region on the right looks roughly the same with 
the region on the left. 

     ,     (3.2)   2
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where in , the subscripts indicate partial derivatives of the brightness 

function with respect to x and y. I

),( yx III =∇

t indicates its partial derivative over time and stands 

for the 2

2O
nd and higher order terms. Dropping the terms above first order, the data 

conservation constraint gives the standard Optical Flow Constraint Equation (OFCE): 

0=++ tyx IvIuI ,         (3.3) 

                                                 
1 The mathematical symbols are in correspondence with those from Black et al. [Black et al., 1996a] 

throughout this thesis 
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It is obvious that it is impossible to recover velocity, given just the gradient constraint at 

a single position, since Eq. (3.2) provides a single equation with two unknowns, i.e. u, v. 

As shown in Fig. 3.2, motion vectors satisfying Eq. (3.2) are constrained along a line in 

(u, v) space. Only the component of velocity in the gradient direction that is normal to the 

spatial image orientation is determined [Horn, 1986]. This is referred to as the aperture 

problem and may be understood by considering an edge of an object moving below a 

small aperture. More details are given in section 3.3.2. 

0=++ tyx IvIuI

Fig. 3.2 The data constraint equation constrain velocity to lie somewhere on a line in 2d velocity space 
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To recover an estimate of the optical flow at a point, one should simply minimize 

the following term by taking into account a small neighborhood: 

∑
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which is actually the standard least-squares estimate as described by Horn & Shunck 

[Horn et al., 1981]. This regression formulation assumes that a single motion exists in 

this small neighborhood and can be considered as a local motion estimation method. 

3.1.2 Bayesian Framework & Regularization Techniques 

The ill-posed nature of the OFCE leads to the unavoidable need for further constraints to 

achieve a unique solution. This consideration fits well within the maximum a posteriori 
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(MAP) framework that provides a way of incorporating prior information (constraints) in 

the solution recovery procedure. To illustrate this, let { }Txx ,...,1=x  denote a given set of 

T observation vectors, where  are either independent and identically distributed 

or are drawn from a probabilistic function. The difference between MAP and maximum 

likelihood (ML) estimation lies in the assumption of an appropriate prior distribution of 

the parameters to be estimated. If θ, assumed to be a random vector taking values in the 

space Θ, is the parameter vector to be estimated from the sample x with probability 

density function (PDF) , and g is the prior PDF of θ, then the MAP estimate, θ

Txx ,...,1

( θ|⋅f ) MAP, 

is defined as the mode of the posteriori PDF of θ denoted as ( )x|⋅g , i.e. 

       ( ) ( ) ( )θθxxθθ gfg |maxarg|maxargMAP
θθ

==                             (3.5) 

If θ is assumed to be fixed but unknown, then there is no knowledge about θ, which is 

equivalent to assuming a non-informative prior or an improper prior, i.e. g(θ)=constant. 

Under such an assumption, Eq. 3.5 reduces to the familiar ML formulation. In general, 

the observation is only related to the current available information, while the a priori 

constraint is related to the fact that we know something about the data without even 

observing them.  

 In terms of optical flow, the observation part could be related with the probability 

of a prediction error-image and the a priory part could be formulated by quantifying prior 

expectations on the estimation. Widely used prior “expectations” are discussed at 

subsequent sections, while new ideas regarding such motion constraints are discussed in 

chapter 5. 

 Various low-level vision problems can be solved by regularization, a powerful 

tool that reaches a solution by approximating given observations. The problem with this 

approach lies on the oversmoothed solutions at discontinuities. Many researchers have 

proposed methods to alleviate this artifact. Section 3.1.6 reviews these methods. 

Generally, the regularization converts ill-posed problems into well-posed ones by 

constraining the solution with a priori assumption; exactly as in the MAP formulation. 

The energy function J(θ, α) in Tikhonov’s regularization framework is defined by 

[Tikhonov et al., 1977; Bertero et al., 1988; Sim et al., 1998] 
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where S and D represent smoothness (see Section 3.1.3)  and data terms, respectively. 

The smoothness on the solution depends on α and can be adaptively determined 

according to a priori knowledge. By minimizing this energy function, the solution 

 is obtained. ( α|minargreg θθ
θ

J= )

 It becomes obvious that MAP estimation formally looks very similar to 

regularization. Their fundamental difference should therefore be emphasized. In 

regularization theory, the chosen smoothness constraint must assure that optimization of 

the resulting criterion is a well-posed problem. In the Bayesian framework, both terms 

cannot be chosen arbitrarily, but must reflect probability distributions [Stiller, 1997]. In 

this thesis, we follow a regularization approach emphasizing on the smoothness 

constraint(s). 

3.1.3 Spatial Coherence Constraint 

One way to constrain (regularize) the solutions derived by the data constraint equation is 

to invoke a smoothness assumption. Local gradient methods constrain only partially the 

solution, as indicated before, and are very sensitive to noise deriving bad solutions in 

cases of areas with little variation in texture. In the original sense of Hadamard, 

[Revalski, 1997], a well-posed problem is characterized by the following three properties: 

1. Existence  There is a solution 

2. Uniqueness  The solution is unique 

3. Continuity  The solution depends in a continuous manner on the data 

Hence, considering an ill-posed problem, the solution may not exist, may not be unique 

(giving an ambiguous reconstruction) or it may not depend continuously on the data. 

The introduction of the spatial coherence constraint makes the optical flow estimation 

problem well-posed by implying that the OFCE holds locally within some neighborhood. 

It assumes that the flow within a neighborhood changes gradually or, in other words, 

neighboring points in the scene typically belong to the same surface and therefore have 

similar velocities as shown in Fig. 3.3. This further assumes that there is only a single 

motion within a confined range. However, optical flow is not totally continuous but is 
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Fig. 3.3 Smoothness Constraint: Constant motion is assumed for a small 
neighborhood 

only piecewise smooth since depth boundaries in the scene may give rise to 

discontinuities in the flow. This assumption is commonly violated at the borders of a 

moving object. If this assumption is falsely imposed, then motion estimation error can 

occur at object boundaries (Fig. 3.3).  

To recover an estimate of the optical flow at a certain point, one should simply 

minimize Eq. (3.3), in the least-squares sense, with the addition of the regularizing term 

: SE

)()()()()( 2 uuuu SStsysxDSSDD EIvIuIEEE λλλλ +++=+= ,     (3.5) 

where λD and λS control the relative importance of the data conservation and spatial 

coherence terms. Eq. (3.5) is the mathematical expression of our expectation that the 

optical flow will minimize any violations of the OFCE , and at the same time, will 

minimize the magnitude of velocity changes between neighboring pixels. 

 The most common formulation of  is the first-order, or membrane, model 

[Horn et al., 1981] 

SE

2222),( yxyxs vvuuvuE +++= , 
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where the subscripts indicate partial derivatives in the x or y direction. For an image of 

size pixels, we define a grid of sites, nn×

{ }1)(),(0,1|,...,, 2
11 2 −≤≤≤≤∀= nsjsinwsssS wwn , 

where (i(s),j(s)) denotes the pixel coordinates of site s. The first-order constraint can then 

be discretized as: 
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where the subscripts s and n indicate sites in S and where Gs is the set of 4-connected 

neighbors of s in the grid. 

3.1.4 Temporal Continuity 

Another assumption used for regularizing optical flow is the temporal persistence of 

Fig. 3.4 Temporal Continuity: A small neighborhood is assumed to have constant velocity or 
acceleration over time. 
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surfaces. It assumes that the motion of a surface changes gradually over time. Black & 

Anandan [Black et al., 1990; Black et al., 1991; Black, 1994] first exploited the power of 

this constraint to integrate motion information over time in an incremental estimation 

framework, where motion vectors are projected from one to the next instant and 

incrementally adjusted based on frame differences. 

 Incremental approaches have gained strong interest during the last decade, 

because they are more suited to the dynamic nature of motion estimation. Towards this 

direction, Black [Black, 1994] uses a temporal continuity constraint under a general 

incremental minimization framework to obtain more accurate information about the 

motion in the scene over time. He uses the simple assumption that the acceleration of a 

surface is constant over time (Fig. 3.4). From a mathematical point of view, this 

assumption states that we can predict the flow at the next instant, t , from t-1 as follows: 

ttttvytuxu
t

tttvytuxutyxu δδδδδδδ ),,(),,(),,( −−−
∂
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+−−−=− ,      (3.6) 

where  is the predicted flow field and the acceleration is approximated by −u

t
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t δ
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To recover an estimate of the optical flow that consistently evolves over time one 

should simply minimize Eq. (3.5) with the addition of the temporal continuity term : TE

),()()()( −++= uuuuu TTSSDD EEEE λλλ ,       (3.8) 

The last term force the solution to be close to the prediction. This constraint, like the 

previous two, is often violated in real scenes.  

3.1.5 Coarse-to-fine Processing 

A common problem in optical flow estimation is temporal aliasing. Video imagery is 

typically sampled below the Nyquist rate in time. Although, newer technology and more 

sophisticated hardware can circumvent this inherent shortcoming of frame acquisition, 

the problem persists when, for example, an object undergoes a large motion. In this case 

the OFCE, Eq. (3.3), becomes inappropriate. A number of authors have developed 

coarse-to-fine processing strategies for handling the temporal aliasing in the context of 

motion estimation [Anandan, 1989; Enkelmann et al., 1988; Lucas et al., 1981]. These 

 37



algorithms are efficiently implemented by using image pyramids. The image pyramids 

are generated by Gaussian or Laplacian methods [Anandan, 1989; Battiti et al., 1991; 

Enkelmann, 1988; Glazer, 1987; Burt et al., 1983]. Because of the low frequency 

representation at coarse resolution, the OFCE becomes applicable in the case of small 

image motions at the coarsest resolution [Kearny et al., 1987]. The basic concept in these 

approaches is that the aliasing affects only the high frequency component of the input 

image. Thus, one can accurately estimate image velocities on a spatially lowpass-filtered 

version of the input image (coarse level). These estimates may then be used as initial 

guesses for initializing the motion at the next (finer) levels. The process is repeated 

recursively until we reach the finest level (initial resolution). 

 For efficiently overcoming the effect of temporal aliasing in the estimation of the 

optical flow field at time t (from frame t to t+1) the frame t at coarse resolution is 

projected to the next level with the appropriate pixel displacement (u tvt ) estimated 

at the current level l. 

δδ ,

),,(~),,( 1 ttvytuxItyxI lprojectionl δδ ++⎯⎯⎯ →⎯ +  

Thus, from one level to the next, the current frame is motion aligned (compensated) with 

the next frame so that the OFCE does not engage the entire motion field from t to t+1, 

but only its correction ( ) that is revealed at the current level of resolution. Fig. 

3.6 summarizes graphically the procedure. 

ll vu δδ ,

Project Reduce 

Fig.3.5 Image Pyramid 
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3.1.6 Literature Review 

 Regularization by requiring a slow varying optical flow field was first introduced 

by Horn & Shunck [Horn et al., 1981].  The solution for u, v are given as a set of Gauss-

Seidel equations that are solved iteratively. Lucas & Kanade [Lucas et al., 1981] use a 

local constant velocity model and solve it with a weighted least squares fit of local first-

order constraints by minimizing 

∑
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t tyxIutyxIW ,   (3.9) 

where . Simoncelli et al. [Simoncelli et al., 1991] present a Bayesian 

perspective of Eq. (3.9). They model the OFCE, Eq. (3.3), using Gaussian distributed 

errors on gradient measurements and a Gaussian distributed prior on velocity vector u. 

The resulting solutions are not more accurate than those from Lucas & Kanade, but their 

technique provides a confidence measure on unreliable estimates [Barron et  al., 1994].  

Tvu ],[=u

 Nagel was one of the first to use second-order derivatives to measure optical flow 

[Nagel, 1983; Nagel, 1987; Nagel et al., 1989]. As an alternative to Eq. (3.5), Nagel 
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suggested an oriented-smoothness constraint in which smoothness is not imposed across 

edges in an attempt to handle occlusion. 

Several researchers use line processes [Geman et al., 1984; Black et al., 1996b] to 

explicitly model the motion discontinuities. Konrad et al. [Konrad et al., 1992] model the 

motion and the discontinuity fields as a pair of coupled MRFs and minimize the resulting 

energy function by means of stochastic relaxation. Identifying the need to exploit 

intensity discontinuities to detect motion discontinuities, they propose a potential 

function for the line field that depends on the local image gradient.  

Stiller [Stiller, 1997] develops a stochastic image sequence model and use it to 

unsupervised Bayesian estimation of dense motion fields and their segmentation. The 

stochastic image sequence model includes two main components. First, the prediction 

error and second the a priori distribution of the motion field. The first component’s 

distribution is modeled by a white generalized Gaussian. The second component’s 

distribution is modeled by a compound MRF accounting for small spatial bindings as 

well as for bindings along motion trajectories. Based on this model, the MAP criterion is 

formulated as an objective function. 

3.2 Region Level Motion Estimation (region-based matching) 

Accurate numerical differentiation may be impractical because of noise. The natural 

alternative is region-based matching [Anandan, 1989; Little et al., 1989]. Block 

matching, a special case of area-based matching, is one of the most popular estimation 

schemes used in video coding. As indicated in chapter 2, it is the central part of the 

motion compensation technique used in MPEG standards. 

 When determining the optimal motion displacement of the prediction, a full 

search is guaranteed to produce the best possible value. This assumes, however, that the 

criterion for optimality is known and that the computational resources needed for a full 

search are available. Generally, displacements are chosen that either maximize 

correlation or minimize error between a macroblock and a corresponding array of pixel 

values in the reference frame. Correlation calculations are computationally expensive and 

therefore error measures such as mean square error (MSE) and mean absolute distortion 

(MAD) are more commonly used. MAD is perhaps the simplest and most accepted 
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measure of best match [Musmann et al., 1985]. MAD for a 1616×  pixel macroblock 

(MPEG) is defined as: 

∑∑
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where is the current pixel array at macroblock position (x ,y) and 

is the corresponding array of pixels in the next frame at 

macroblock position (x+dx, y+dy). The 
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1616×  array in frame m is displaced horizontally 

by dx and vertically by dy. By convention, x, y refer to the upper left corner of the 

macroblock, indices i, j refer to values to the right and down and displacements dx, dy are 

positive when to the right or down. To speed up the search procedure many methods have 

been proposed, such as the 2D-logarithmic search [Jain et al., 1981], the three-step 

search [Koga et al., 1981] and the conjugate direction search [Srinivasan et al., 1985]. 

 While block-matching proves to be very successful for most macroblocks, there 

are cases when the search fails. At long edges of the image and in uncovered smooth 

background areas, there is often no unique prediction, which means that the estimated 

motion is not necessarily representative of the true motion. The latter consideration is 

closely related to the aperture problem discussed in section 3.3.2. If the motion is greater 

than the search range, the search will also fail. By inference, one can “trust” the motion 

vectors obtained by such an algorithm, but has to pay attention to certain cases. 

3.2.1 Literature Review 

Anandan introduced a technique based on a Laplacian pyramid and a coarse-to-fine SSD 

(Sum of Squared Differences) based matching strategy [Anandan, 1989]. The Laplacian 

pyramid [Burt et al., 1983] allows the computation of large displacements between 

frames and helps to enhance image structure, such as edges. The mathematical expression 

of SSD is as follows: 
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where W denotes a discrete 2-D window function, x=[x, y] and d=(dx, dy) take on integer 

values. Under such approaches, the velocity vector is defined as the shift d that yields the 

best fit between image regions at different times.  

Their algorithm is briefly described in [Barron et al., 1994]. They begin at the coarsest 

level, where displacements are assumed to be 1 pixel/frame or less. SSD minima are first 

located to pixel accuracy by computing SSD values in 33×  search space using a 

Gaussian for W(x). Subpixel displacements are then computed by finding the 

minimum of a quadratic approximation to the SSD surface (about the minimum SSD 

value found with integer displacements). A smoothness constraint is also applied on the 

velocity estimates. Matching and smoothing are performed at each level of the Laplacian 

pyramid. When moving from coarser to finer levels they use an overlapped projection 

scheme. The initial  SSD search area is determined by projecting the coarser level 

estimate at each pixel to all pixels in a 

55×

33×

44×  region at the next finer level so that each 

pixel at the finer level has four initial guesses. 

A simple area-matching algorithm that uses an exhaustive search over a small 

neighborhood, across the previous n frames is proposed by Camus in [Camus, 1997]. 

They determine the correct motion of a patch of pixels by simulating the motion of the 

patch for each possible displacement and consider a match strength for each 

displacement. If φ represents a matching function, which returns a value proportional to 

the match of two given features (such as the absolute difference between two pixels’ 

intensity values), then the match strength M for a point (x, y) is calculated as: 

( )∑ ++−= +
yx

ttt yxIyxIyxM
,

)yx,(),(),( δδφ δ . 

The actual motion of the pixel is taken to be that of the particular displacement, out of 

(2n+1)*(2n+1) possible displacements, with the maximum neighborhood match strength.; 

thus it is called a “winner-take-all” algorithm. 

 42



3.3 Constraint Violations & Aperture Problem 

3.3.1 Constraint Violations 

The short description of commonly used constraints for optical flow estimation reveals 

that such constraints are often violated in real scenes. A robust motion estimation method 

should cope with such problems in order to properly recover the optical flow. 

The interpretation of intensity variation as pure relative motion as expressed by the 

OFCE is problematic, because velocity is a geometric quantity independent from 

illumination conditions. Regarding the data conservation constraint one can come to 

following conclusions [Memin et al., 1998; Black et al., 1996a]: 

• The first order Taylor series expansion used, assumes locally constant 

translational motion 

• The assumption of brightness constancy is commonly violated in cases of 

occlusion, transparency, specular reflection, change of illumination (e.g. 

shadows), non-rigid movement etc. 

• When multiple motions exist within a region, the constraint does not hold. The 

single motion assumption is violated. 

Realistically, the OFCE conditions are never entirely satisfied in scenery. The degree to 

which these conditions are satisfied partly determines the accuracy with which optical 

flow approximates image motion. Several authors have addressed the problems arising 

from non-uniform illumination with more or less success [Bergen et al., 1992; Fleet et 

al., 1990; Jepson et al., 1993; Mukawa, 1990; Tull et al., 1996]. 

The most obvious violation of the spatial coherence constraint is at motion 

discontinuities. The implicit assumption that the velocities within a region are constant is 

often not even true for apparently smooth areas. Most of the real velocity fields exhibit 

such motion discontinuities that tend to be ignored and smoothed out by the quadratic 

estimate (Eq. (3.4)). 

The motion of objects in the surrounding world is often not so predictable. They 

abruptly change direction, rotate, stop etc. Consequently, the temporal continuity 

constraint is often invalid. In addition, the constraint cannot cope with 
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occlusion/disocclusion situations. In these cases, an object suddenly appears or 

disappears leading to discontinuities of the natural optical flow. 

3.3.2 Aperture Problem 

As identified in section 3.1.1 the optical flow is not uniquely determined by the 

OFCE as shown in Fig 3.1. The fundamental reason for this is what is called the aperture 

problem. Consider one point in the image. We are computing the gradient in a small 

window around this point, the aperture. Within this small window, the intensity varies in 

the direction of the gradient, but not in the direction perpendicular to the gradient. In 

terms of edges: the intensity varies across the edge but not along the edge. As a result, a 

motion that is parallel to the edge can never be recovered. In chapter 1, we show a simple 

example with the moving gray rectangle that illustrates the aperture problem. To illustrate 

this further let us study another example. In Fig. 3.7, we observe a moving line through a 

small circular aperture. It appears as it has moved along the indicated direction (arrow) in 

the left picture. Only if we “open” our eyes a little further we can observe and determine 

the correct movement as in the right picture. 

By considering the aperture problem, a great trade-off problem arises: Estimation 

of optical flow involves the pooling of constraints over some spatial neighborhood. Since 

the image is prone to noise, the region must be sufficiently large enough to robustly and 

Fig. 3.7 Aperture Problem: If we look through the small aperture we see a line 
moving to the indicated direction. If we expand the aperture, though, we observe a 
different direction.
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accurately estimate the solution. However, a larger region of integration is more likely to 

contain multiple motions. That is, the region must be small to avoid violating 

assumptions such as single motion for the region. This is the so-called generalized 

aperture problem. Therefore, deciding how large a chosen region should be remains a 

very hard problem. 

3.4 Comparison of Motion Estimation Methods 

In an attempt to briefly present the advantages and disadvantages of the motion 

estimation methods discussed before, namely the differential and block-matching in 

MPEG, we make the following comments: 

• Both suffer from the aperture problem, but differential techniques give smoother 

vector fields and do not allow sharp MV changes in smooth areas. 

• Block matching proves better in edges at the expense of possibly drastic MV 

changes on edge, when aperture problem is severe. 

• Differential techniques perform equally well with block-matching at large 

motions (within the search range of block-matching). 

• The dynamic nature of differential methods makes them more flexible, because of 

the continuously improving estimate they recover. 

• The sparseness of the MPEG vector field renders it almost inappropriate for 

accurate motion segmentation.  
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Chapter 4 

 

4. Robust Estimation Framework & Optical Flow  

4.1 Robust Statistics 

The field of robust statistics [Hampel et al., 1986; Huber, 1981] has been developed to 

address the fact that strict distributional model assumptions are not supposed to be 

exactly true. As Huber indicates, “such assumptions are mathematically convenient 

rationalizations of an often fuzzy knowledge or belief. As in every other branch of applied 

mathematics, such rationalizations or simplifications are vital, and one justifies their use 

by appealing to a vague continuity or stability principle: a minor error in the 

mathematical model should cause only a small error in the final conclusions.” 

 Unfortunately, this does not always hold. For example, the typically assumed 

normality of errors in a parametric formulation provides access to standard statistical 

tools for drawing conclusions about parameters of interest, but there may not be any 

guarantee that such a regularity assumption is tenable in a given context. The study on the 

effects of departures from model assumptions led to the development of robust statistics.  

Various definitions of greater or lesser mathematical rigor are possible for the 

term “robustness”. In general, referring to a statistical estimator, it means “insensitive to 

small departures from the idealized assumption for which the estimator is 

optimized”[Huber, 1981]. The word “small” can have two different interpretations, both 

important: either fractionally small departures for all data points, or else fractionally large 

departures for a small number of data points. It is the latter interpretation, leading to the 

notion of outlier points, which is generally the most stressful for statistical procedures. 

The idealized distribution model is usually the Gaussian, since it is the most important 

case and the best understood one.  
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As identified by Huber [Huber, 1981] the main goals of a robust procedure are: 

1. It should have a reasonably good (optimal or nearly optimal) efficiency at 

the assumed model. 

2. It should be robust in the sense that small deviations from the model 

assumptions should impair the performance only slightly, that is, the latter 

should be close to the nominal value calculated at the model. 

3. Somewhat larger deviations from the model should not cause a 

catastrophe. 

4.1.1 Measures of robustness 

The first step in describing robust estimators is to state clearly what is meant by 

robustness. Several measures of robustness are used in the literature. Most common is the 

breakdown point [Rousseeuw et al., 1987] —the minimum fraction of outlying data that 

can cause an estimate to diverge arbitrarily far from the true estimate. For example, the 

breakdown point of least squares is 0 because one bad point can be used to move the least 

squares fit arbitrarily far from the true fit as shown in Fig. 4.1. The theoretical maximum 

breakdown point is 0.5 because when more than half the data are outliers they can be 

arranged so that a fit through them will minimize the estimator objective function. 

A second measure of robustness is the influence function [Hampel et al., 1986; 

Huber, 1981], which, intuitively, is the change in an estimate caused by insertion of 

outlying data as a function of the distance of the data from the (uncorrupted) estimate. 

For example, the influence function of the least-squares estimator is simply proportional 

to the distance of the point from the estimate. To achieve robustness, the influence 

function should tend to 0 with increasing distance. 

 Finally, although not a measure of robustness, the efficiency of a robust estimator 

is also significant. This is the ratio of the minimum possible variance in an estimate to the 

actual variance of a (robust) estimate [48], with the minimum possible variance being 

determined by a target distribution such as the normal (Gaussian) distribution. Efficiency 

clearly has an upper bound of 1.0. Asymptotic efficiency is the limit in efficiency as the 

number of data points tends to infinity. Robust estimators having a high breakdown point 
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tend to have low efficiency, so that the estimates are highly variable and many data points 

are required to obtain precise estimates. 

 
Fig. 4.1 A 2D distribution fitted to a  straight line; non-robust techniques such as least-squares 
fitting can have undesired sensitivity even to a single outlier.

4.1.2 Mathematical Framework & Robust Estimators 

To state the issue more concretely, robust statistics addresses the problem of finding the 

values for the parameters, , that best fit a model, , to a set of data 

measurements, , in cases where the data differs statistically from the 

model assumptions. In fitting a model the goal is to find the values for the parameters, a, 

that minimize the size of the residual errors 
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where sσ  is a scale parameter, which may or may not be present, and ρ is our estimator. 

When the errors in the measurements are normally distributed, the optimal estimator is 

the quadratic: 
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σ
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= ,      (4.2) 

which gives rise to the standard least-squares estimation problem. The function ρ is called 

an M-estimator since it corresponds to the Maximum-likelihood estimate. 

 

Fig. 4.2 (α) Quadratic estimator and ψ- function; (b) Lorentzian estimator and ψ- function 

 To analyze the behavior of an estimator we will look at the “influence function” 

(IF), [Hampel et al., 1986], approach. The IFs measure the effect of a single data point on 

parameter estimates. The influence function of estimator ρ is defined as its derivative 

x
xψ

ϑ
ρϑ

=)( . For the quadratic estimator, we have 2)(
σ
rrψ = : note that this grows 

without bound as r increases (Fig. 4.2). Therefore, any single measurement can have an 

arbitrarily large effect on the estimate. For example: for least-squares, the mean is 

estimated as  
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Since xN+1 can take on any value, it can have an arbitrarily large effect on the estimate of 

the mean. 

 To increase robustness we will consider a redescending estimator for which the 

influence of outliers tends to zero, namely the Lorentzian: 
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The Lorentzian is continuously differentiable, its ψ function is roughly linear for r small 

compared to σ, like the quadratic estimator, and redescends for σ≈r , reducing the effect 

of outliers. Both the least-squares and Lorentzian estimators are shown in Fig. 4.2. 

4.2 Optical Flow & Robustness (Framework & Literature Review) 

Many existing techniques based on robust statistics are able to cope adequately with the 

hard problem of optical flow recovery when their assumptions hold. The challenge is to 

achieve high robustness against strong assumption violations commonly met in real 

sequences. In this thesis, we will mainly use and extend the regularization techniques 

presented at the previous chapter (sections 3.1.2, 3.1.3). Several authors propose an 

extension of these techniques using robust statistics [Black et al., 1991; Black et al., 

1996a; Black, 1994; Memin et al., 1998; Ye et al., 2001; Ye et al., 2002]. We mainly 

focus on the extension of the work of [Black et al., 1996a] towards dense optical flow 

recovery in compressed video and use of additional constraints on image motion.  

4.2.1 Robust Formulation of Regularization Techniques 

In Chapter 3, we formulated the objective function including OFCE and its constraints 

and recovered the optical flow estimate in the least-squares sense. We also indicated the 

need for robustness due to the sensitivity of least-squares approaches at constraints’ 

violations. The reformulation of the objective function to include the robust statistics 
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tools described above is almost straightforward. Black & Anandan, [Black et al., 1996a], 

use an M-estimator in the Horn & Shunck method [Horn et al., 1981]. They simply take 

the standard least-squares formulation of optical flow and treat them in terms of robust 

estimation in an attempt to overcome the problems of oversmoothing and noise 

sensitivity. The standard least-squares estimate, Eq. (3.4), is simply reformulated as: 
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and the smoothness constraint, Eq. (3.5), becomes: 
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where ρ is a robust estimator and Dσ  and Sσ are the scale parameters for the robust 

estimators used. Similarly, the temporal continuity constraint becomes: 

),(ρ),(ρ)( TT σσλ −− −+−= vvuuE TT u  

 This robust formulation is adopted by many authors in the field of optical flow 

computation. Section 4.3 gives a brief overview of existing robust estimation 

regularization methods. 

4.2.2 Minimization 

Given the above robust formulation, many optimization techniques can be 

employed to recover the motion estimates. In general, the robust formulations do not 

admit closed form solutions, and often result in an objective function that is non-convex. 

Black & Anandan explored the use of stochastic minimization techniques such as 

simulated annealing [Black et al., 1991] but found deterministic continuation methods to 

be more efficient and practical [Black et al., 1993]. Under this consideration, they use 

SOR (Simultaneous Over-Relaxation), [Press et al., 1988], to find the local minima and 

GNC (Graduated Non-Convexity) to find a globally optimal solution [Blake et al., 1987]. 

The general idea is to take the non-convex objective function and construct a convex 

approximation. In the case of the Lorentzian estimator, this can be achieved by making 

the scale ( Dσ , Sσ , Tσ ) parameters sufficiently large. This approximation is then 

minimized using a coarse-to-fine SOR technique. Successively better approximations of 

the true objective function are then constructed by altering the σ values, and minimized 
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starting from the solution of the previous approximation. Fig. 4.3 shows the Lorentzian 

estimator and its ψ-function for various values of σ. A coarse-to-fine strategy is employed 

to cope with large motions.  

(b) (a) 

Fig. 4.3 Lorentzian objective function plotted for thresholds { }
2

16,8,4,2,1∈σ . (a) Lorentzian 

Error measure; (b) Influence function,ψ(x,σ) [Black et al., 1996] 

 The coarse-to-fine approach is employed as described in section 3.1.5. A pyramid 

of spatially filtered and sub-sampled images is constructed using Gaussian kernels. 

Beginning at the lowest spatial resolution with the flow u starting from the initial 

{ }

end

TSDiyxfyx

SORyramid
finetooarse

imageeachfor
n

uu

uuu

uu

←

∈←

←

−−

←

←
←

−

−

−

solutionpreviousRetain//
,,)),,((),(

parameterscontrolUpdate//
),,nmin_level,max_level,,Image,Image(_P

SORcPerform//

iterationsofnumberfixed
siteeveryatvalueinitial

]0,0[,

ii

21

TS,D,

σσ

σσσ

 

Fig. 4.4 GNC pseudocode 
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estimates, the change in the flow δu is computed. The new flow field, u+δu, is then 

projected to the next level in the pyramid (scaled as appropriate) and the first image at 

that level is warped towards the latter image using the flow information. The warped 

image is then used to compute the δu at this level. The process is repeated until the flow 

has been computed at the full resolution. The GNC and SOR algorithms, which are used 

to recover the solution, are stated below. 

The overall structure of GNC, coarse-to-fine SOR and SOR in terms of 

pseudocode is shown at Fig. 4.4, 4.5, 4.6, respectively. At any instant in time, the 

algorithm has a current estimate of the flow field u. When the projected image is 
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Fig. 4.5 Pyramid_SOR pseudocode 
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processed, the constraints are applied to yield a new objective function E and the estimate 

is refined, beginning with the prediction u- as an initial estimate, by performing a fixed 

number of iterations of a continuation method, where an iteration corresponds to updating 

all flow vectors in the image. 

end
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Fig. 4.6 SOR pseudocode 

 As indicated before, the continuation method used is a coarse-to-fine SOR 

technique. The iterative update equations for minimizing E at step n+1 are simply [Blake 

et al., 1987]. 
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Therefore, the SOR method is summarized as: 

 

where δu is the velocity vector refinement at each iteration and the projected velocity 

vector from the previous level. 

pu

All parameters (σD, σS, λD, λS) are manually tuned and are constant for a number of 

experiments. Although, the authors claim that there is no need for exact parameter tuning 

due to the stability of the approach, there is still a need for automatic parameter 

evaluation to tackle the different video content scenarios. 

4.3 Robust Estimation Literature Review 

Odobez & Bouthemy [Odobez et al., 1995] describe two robust multiresolution 

algorithms to solve the M- estimation problem, namely IRLS (Iterative Reweighted Least 

Squares) and PSM (Pseudo M- Estimator), and compare both of them with a 

multiresolution least-mean squares method. 

Memin & Perez [Memin et al., 1998] present a multiresolution/multigrid 

framework for optical flow estimation and object-based motion segmentation. The 

minimization of the energy function is processed through a multigrid algorithm, which 

consists in imposing weaker and weaker constraints on the searched estimates. This 

method leads to a multigrid iteratively reweighted least squares minimization of the 

objective function. The associated parameters are manually tuned and held constant for 

the whole procedure. 

Sim & Park, [Sim et al., 1998], propose an algorithm that is constructed by 

embedding the least median of squares (LMedS) of robust statistics into the Maximum A 
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Posteriori (MAP) estimator. They call it Reweighted Robust MAP (RRMAP). They 

describe it for a pair of images and extend it for multiple frame cases. 

Bab-Hadiashar & Suter, [Bab-Hadiashar et al., 1998], introduce and study two 

new robust optical flow recovery methods. For the first method, they modify the LMedS 

and use it to find an initial estimate. This initial estimate is then used to classify each 

pixel into two groups: “inliers” and “outliers”. Finally, the inlier group is solved using 

the least squares technique. The resulting technique is called Weighted Least Squares 

(WLS). The second presented method is called Weighted Total Least Squares (WTLS). 

The weights for this method are computed using a new robust statistical method named 

the Least Median of Squares Orthogonal Distances (LMSOD). 

Ye et al. [Ye et al., 2002] propose a formulation based on three-frame matching 

and global optimization allowing local variation. Specifically, they begin with a robust 

local gradient method for initial flow and variance estimates, then refine the results using 

a global gradient descent method, and finally minimize the original energy by fastest 

descent. The optimization technique they adopt, namely graduate optimization, bears a 

certain similarity with GNC in that they start from an initial estimate and progressively 

minimize a series of finer approximations to the original energy. 
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Chapter 5 

 

5. Robust Optical Flow Recovery From 

Compressed Video 

In chapter 2, we discussed the advantages of processing compressed video without the 

need for full decompression. We also described the information that can be made 

available from an MPEG stream under the latter requirement, namely the motion vectors 

and the DC coefficients. In this chapter, we will elaborate on dense optical flow recovery 

using this information and will develop our approach step-by-step. We defined the term 

“dense” to characterize the generation of a motion vector for each single pixel in the 

image. In our approach, each pixel corresponds to the DC value of an MPEG block. 

Hence, under our framework, dense optical flow means the recovery of a single motion 

vector for each MPEG block or DC coefficient. New constraints on OFCE will be 

introduced and ideas regarding current and future work will be discussed. 

5.1 Initial Formulation 

Processing of uncompressed video (or moving image sequences) is the main topic for 

several research areas during the last two decades. Algorithms for generation of dense 

optical flow and intensity/motion segmentation have been proposed and integrated to 

complete computer vision systems, e.g. robotic vision & navigation. Many of them have 

proved promising and have undergone further research. The common problems they 

share are the complexity and memory/time consumption that render most of them 

inappropriate for several applications. The wide use of compressed video and the 

advantages it offers, naturally leads to the idea of transferring expertise from the 

uncompressed to the compressed domain. Hence, many researchers applied well-

established uncompressed domain techniques to compressed video streams, mainly, for 
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scene or shot segmentation [Yeo et al., 1995b; Ardizzone et al., 1996; Ardizzone et al., 

1998; Xiong et al., 1998; Mandal et al., 1999; Bonzanini et al., 2000]. 

 To our knowledge, there is not serious work related to the estimation of dense 

optical flow field for compressed video. The motion field that is already available in an 

MPEG stream, generated by the block-matching technique (Chapter 2), is by no means 

representative of true motion and therefore not appropriate for possible use in accurate 

robotic vision, or motion segmentation and representation. Its main disadvantages are the 

inaccuracy in homogenous regions and the sparseness, since one MV for each MB is 

provided. 

 We start the presentation of our approach by realizing that most velocity 

estimation algorithms suffer from the initial value problem. Most optimization techniques 

fail, if the initial estimate of the solution is far from optimal. Several authors address this 

problem and encounter it by generating a crude initial motion field [Ye et al., 2002] or by 

setting the motion field equal to zero and expecting the algorithm to converge after a 

number of iterations [Black et al., 1996a]. The MPEG standard provides us with a 

valuable tool that can be used to provide a “good” initial solution, namely the MPEG 

motion vectors. Although not accurate, especially at the borders and homogenous 

regions, these motion vectors are something “more” than a crude initial motion field. In 

our approach, we combine information from MPEG and robustly estimated motion 

vectors in order to recover a more accurate and dense optical flow field. In order to avoid 

full decompression of the MPEG stream we apply our robust estimation technique to the 

approximate DC images discussed in chapter 2. The intensity information they bear is 

enough for achieving efficient motion estimation. 

5.2 Approach (step-by-step) 

In the following sections, we describe our approach and explain the developed 

methodologies step-by-step. We discuss the algorithm for selecting the initial and final 

values of the scales used in incremental minimization of the objective function and the 

way they affect the final solution. The minimization framework is the same with that of 

[Black et al., 1996a], described analytically in chapter 4, and therefore no extended 

information is given. The main topic is the new motion constraints we introduce and the 
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way we treat the previous frame’s motion field to recover the current frame’s optical flow 

by balancing the individual constraint factors (λ). 

5.2.1 Available Information & Construction of the Objective Function  

An advantage of the compressed video over uncompressed is the available information 

included in the compressed stream. Such information can form the basis of many 

algorithms for motion representation, scene change/cut detection, intensity/motion 

segmentation etc. As explained in chapter 2, the directly (without full decompression) 

available information is the MPEG motion field and the DC intensity field. These two 

fields should ideally be spatially related, in the form that intensity changes due to object 

movement or scene change should be accurately captured by the MPEG motion field. 

Unfortunately, this relation breaks down at special locations in an uncontrolled manner. 

 In an attempt to generate a more representative velocity field of the true 

underlying motion, we look at two different ways to compute dense optical flow: The 

dense MPEG motion field (details are given in section 5.2.3) and the dense motion field 

resulting from the OFCE minimization. Their advantages and disadvantages have been 

already discussed in previous chapters.  Our aim is to fuse the information they carry in a 

combinatorial and/or a selective manner. Motion constraints like the temporal continuity 

and the MPEG consistency will help us to effectively constrain the solution and generate 

a consistent optical flow. 

 As a consequence of the previous discussion, a logical question comes to mind: 

Can we relate the computation of the two dense motion fields in order to benefit from 

their inter-relations and incorporate the use of prior information by means of constraints? 

Under the framework of our approach, we view the formulation and solution of OFCE in 

relation to constraints provided by the available dense MPEG field. We formulate the 

objective function to be minimized as the combination of the observed and a priori 

information. The data term of the objective function, which involves the computation of 

derivatives, can be considered as the observation, while the smoothness (constraint on the 

spatial distribution of MVs), temporal and MPEG constraints (constraints on the motion 

field itself) can be regarded as the a priori part. The temporal continuity and MPEG 

consistency constraints can be further classified as algorithm dependent and algorithm 
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independent information respectively. The MPEG constraint involves motion vectors 

generated by the block-matching technique during the encoding, while the temporal 

constraint involves the last frame’s optical flow that is generated during the algorithm’s 

evolution. Hence, the objective function along a regularization framework is formulated 

as 

),(),()()()( MMMTTSSDD EEEEE uuuuuuu λλλλ +++= − , 

initialized at the dense MPEG field, where iλ  with { }MTSDi ,,,=  are the weight 

factors and D,S,T,M stand for data, smoothness, temporal and MPEG respectively . The 

individual constraints can be adaptively tuned, through the individual weights, within the 

extent of computation. Our efforts are mainly focused on tuning them through scalar 

parameters iλ  (combinatorial manner) or through on-off combination (selective 

manner), by keeping the iλ  ratios fixed throughout the data field. The latter combination 

leads to computationally faster results, while retaining an adequate accuracy.  

In essence, our aim is to combine efficiently the available information and 

achieve the following targets: 

1. Relative high accuracy of the recovered flow field (limited by the DC image 

resolution). 

2. Improved detection of motion discontinuities. 

3. Fast processing to retain the advantages of compressed domain processing. 

5.2.2 Initial Velocity Estimation & MPEG Constraint 

The original MPEG motion field cannot be used directly in conjunction with a pixel-

based technique, like the robust estimation scheme we adopt, for two reasons: 

• The MPEG motion vectors may refer to previous or past images that are multiple 

frames apart. 

• The MPEG motion field associates one MV with a region of  pixels. 1616×

In chapter 2, we review the approach of Kobla et al. [Kobla et al., 1997] that produces a 

reorganized set of motion vectors, which is independent of the frame type and the 

direction of prediction. We use this technique to compensate for the first problem. 

Therefore, we generate a new motion field for each frame that represents the direction of 
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motion of each MB with respect to the previous frame. Afterwards, we generate a dense 

velocity field by assigning the MV to all pixels inside the corresponding MB as 

illustrated in Fig. 5.1. We call this field the “uniform MPEG motion field”. 

Fig 5.1  (a) Two MBs with the corresponding MV; (b) Same MV 
assigned to each pixel of the MB to generate a dense motion field

 Summarizing the process at this point, we start with two different inputs, namely 

the intensity and motion information. The DC images provide the intensity information 

that will be used for the computation of the derivatives in the OFCE. These images are 

reduced 8 times in each direction with respect to the original uncompressed image and 

are derived by the technique presented in chapter 2. Each pixel of this small image 

represents a block of a MB and is associated with the corresponding MV from the 

generated dense MPEG field that provides us with initial motion information. The use of 

the dense MPEG velocities as initial solution for the objective function is considered 

reasonable, since we expect that the block-matching technique used in MPEG encoding 

does not deviate much from the true block motion field, at least as an overall distribution 

over the image. Hence, we have an initial estimate, which may exhibit errors, but it is 

overall sufficiently precise in representing the underlying motion. 

 The initialization to the MPEG field does not necessarily express our expectation 

that the final estimate will not deviate much from the initial MPEG solution. We actually 

want the final solution to deviate from the MPEG field wherever the MPEG vectors are 

erroneously estimated. On the other hand, we should encounter for inaccuracies in the 

OFC estimation process. Indeed, the OFCE can be influenced by approximation errors in 

the computation of derivatives that may falsely move the solution away from the MPEG 

field. Moreover, the smoothness constraint that compensates for large fluctuations in the 

data term induces excessive smoothing in the areas of motion boundaries. Therefore, in 
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order to further enhance the effects of the MPEG field in the final solution, we introduce 

an additional new constraint that is based on the difference between the current estimate 

and the initial solution. Mathematically, the latter constraint is robustly formulated as: 

),(ρ)( Mσλ MsMsME uuu −= ,
 

where  is the velocity vector of the dense MPEG MV,],[ MMM vu=u Mλ weights the 

relative importance of the constraint and Mσ  is the scale of the robust estimator used. 

From now on, we will refer to this constraint as the “MPEG consistency constraint”. Its 

robust form allows for large deviations from the MPEG field wherever appropriate, i.e. 

wherever there exist large inconsistencies between the MPEG field and the OFC 

formulation. 

 Frames from another well-known sequence are shown in Fig. 5.2. The “garden” 

Fig. 5.2 Velocity magnitudes for frames 3 and 9 of the “garden” sequence. The first row shows the 
original DC images. The second & third rows show the initial MPEG field for frame 2 and 8, the results 
using OFCE and the results using OFCE+MPEG constraint. Both trials use the uniform MPEG MVs as 
initial solutions. 
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sequence was shot by a camera placed on a driving car, and the image motion is related to 

the distance from the camera. Thus, the tree that is closest to the camera moves faster 

than the background. The first row shows the obtained DC-images from frame 2 and 8 

respectively. The second row presents the initial MPEG velocity field, the results 

obtained by using only the OFCE, in terms of the velocity magnitude ( 22 vu + ) and the 

results using the MPEG constraint along with the OFCE. Both algorithms use the dense 

MPEG MVs, which are shown at the first column of Fig. 5.2, as initial solutions and the 

same values for σi and λi as in [Black et al., 1996].  

The MPEG motion field provides crisp edges that indicate motion discontinuities, 

but the strong variations at homogenous areas, like the trunk of the tree or the branches at 

the upper left corner, are undesirable. As expected, the solution recovered using OFCE is 

inaccurate and oversmoothed at motion edges. Regions belonging to the tree cannot be 

easily distinguished because they are intermixed with the background. Additionally, 

artifacts of the intensity image strongly influence the solution and lead to false optical 

flow; the upper part of the tree has a small intensity “gap” due to lossy compression, 

which is retained in the recovered optical flow. In homogenous areas however, the OFCE 

solution is smoother than the MPEG one. The combination of two constraints, referring 

to optical flow and the MPEG motion field, along with the smoothness constraint, takes 

advantage of the competing nature of these two different motion fields in the overall 

criterion and improves the solution at the areas of their mismatch. Generally, the 

distinction between foreground (tree) and background (house, garden) is clearer on the 

combined solution, which also retains smooth structure within each individual region. 

5.2.3 Initial Velocity Estimation & Temporal Constraint 

We have not yet considered the temporal continuity constraint that we discussed in 

chapter 3. Obviously, we can add it to the objective function, as proposed by [Black, 

1994], by assuming that we expect similar motion from previous to the next frame. The 

goal is to incrementally integrate motion information from new images with previous 

optical flow estimates to obtain more accurate information about the motion in the 

sequence over time. 
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Obviously, the temporal continuity constraint brings prior information into the 

computation of the current motion field, by means of the projected velocity field of the 

previous frame (equals zero for the first frame). We now have two different initial motion 

fields, namely the uniform MPEG that is algorithm independent and the previous frame’s 

that is algorithm dependent. These two fields are by no means uncorrelated and it may be 

reasonable to claim that they are complementary in nature. We expect that the dense 

MPEG MVs are accurate at motion discontinuities and perhaps noisy at homogenous 

regions. On the contrary, we expect that the last recovered optical flow may be less 

accurate at motion borders, mainly due to the influence of smoothing, but more correct at 

uniform intensity regions. Hence, an efficient method should combine both of effects and 

advantages in order to recover, as correctly as possible, the true underlying motion. 

Naturally, the first attempt to combine the temporal and MPEG constraints is to 

add both of them to the objective function, yielding therefore an objective function of the 

following form: 

),(),()()()( MMMTTSSDD EEEEE uuuuuuu λλλλ +++= − , 
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Fig. 5.3 illustrates the results and shows the improvement gained by the 

incorporation of both constraints. The parameters are the same as before with Tσ  varying 

within the Mσ  range. The relative weights Tλ and Mλ are set to 0.5. The improved 

quality of the solution can be optically determined by the more compact optical flow 

(first row) and the more crispy motion edges (second row).
  An in-depth look at the dense MPEG and temporal motion fields reveals an 

intrinsic redundancy at most frame regions. Both fields refer to the same motion and 

therefore we expect them to have similar content. This expectation leads us naturally to 
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Fig. 5.3 Velocity magnitudes for frames 4 and 6 of the “garden” sequence. The first row shows the 
original DC images. The second & third rows show the initial MPEG field for frame 3 and 5, the results 
using OFCE +MPEG and the results using OFCE+MPEG+TEMPORAL constraints. Both trials use the 
uniform MPEG MVs as initial solutions. 

find a way to use them in a distinct rather than a combinatorial form whenever they carry 

similar or consistent information. We reduce redundancy by keeping one of them 

whenever agreeing and combine them to take advantage of their complementary nature 

when we face mismatch. If we expect the dense MPEG field to be more accurate in a 

region, then we can use it alone; if the previous solution seems reliable then we can use it 

independently from the MPEG MVs. Although not yet fully explained, the last scheme 

introduces several advantages: 

1. We can affirm the reliability of the uniform MPEG motion field with the 

additional information from the last recovered optical flow. 
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2. If we conclude that the uniform MPEG field is “trustworthy”, we can avoid the 

minimization of the OFCE by retaining the initial solution for the current frame. 

A great amount of computational time can be saved. 

3. Either we always have the choice to use the previous or the uniform MPEG MVs 

as initial velocity solutions with possible advantages this can offer. 

4. Hard to face cases, like occlusion/disocclusion, illumination shading, appearance 

of new object etc may be handled more efficiently with appropriate MPEG-

Temporal information fusion. For example, region spatial deviations of 

MPEG/temporal fields may help us to identify the previous cases. 

5. Scene changes may be correctly located at frames where the temporal field 

relating the previous to the current frame, deviates as an overall distribution from 

that of the MPEG field, which relates the current to the next frame. 

5.2.4 Scales estimation 

As indicated in section 4.2.2, the minimization of the objective function for recovering 

optical flow begins with a convex approximation and the resulting estimate contains no 

outliers. In this sense, it is very much like the least-squares estimate. Outliers are 

gradually taken care of by lowering the value of each scale and repeating the 

minimization. 

 Black & Anandan [Black et al., 1996a] set the outlier threshold for the Lorentzian 

at σ2x ±≥ , where σ is the Lorentzian scale (Eq. 4.3). The value σ2τ ±=  is actually 

the point at which the second derivative of the Lorentzian equals zero. If the maximum 

expected residual is , then choosing τ
2

τ=σ  will result in a convex optimization 

problem. Black et al. define manually the initial and final values of the scales. They start 

with applying the coarse-to-fine strategy to this convex approximation. Then they lower 

the scales’ values according to an annealing schedule and repeat the whole procedure. 

The scales’ initial and final values are manually set. 

 We use an automatic method for selecting the initial and final scales for the robust 

data conservation and smoothness constraints. As indicated before, the initial solution to 

our algorithm is the available MPEG motion field, which in a Bayesian framework can be 
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viewed as a priori information. Assuming that most of these vectors are correct, i.e. fit 

well the data conservation term, we are based on them to obtain scale estimates. We 

initialize the OFCE with the MPEG motion vectors’ components (u, v) and obtain a value 

for each pixel in the frame. We repeat this procedure for the smoothness constraint 

equation. The resulting distributions are assumed ε-contaminated Gaussian with means 

iµ  and standard deviations iσ . This Gaussian assumption holds well for small residuals, 

which are located around the mean, but fails for large residuals forming the long tails of 

the distribution, which are due to wrong estimates of the MPEG vectors or to large 

inconsistencies between the matching and the OFC criteria. Therefore, we calculate an 

initial global scale 1σ  by fitting a Gaussian distribution, having in mind that this scale 

estimate can be “crude” and only used to generate the convex approximation of the 
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objective function. Afterwards, we make a second fit on the residuals inside the interval 

[ 11, ]σσ +−  and obtain a more accurate Gaussian fit with standard deviation 2σ . The 

second step rejects outliers that may influence negatively the fit. The probability that the 

residuals will fall within this confidence interval is 0.9544997 [Papoulis, 1984]. To 

enhance the robustness of the fit we use the median of the distribution as the estimated 

mean. We then relate the 1σ  and 2σ  with the max and min scales of the Lorentzian 

functions used to model the observation and smoothness terms in section 4.1, in order to 

obtain an upper (convex approximation) and lower (min outlier) threshold for the 

estimated scales. The attempted correspondence between Gaussian and Lorentzian scales 

can be justified by realizing that at small deviations the Lorentzian distribution 

approximates well the Gaussian. Fig. 5.4 illustrates the automatic selection of scales. 

 Consequently, the initial/final scales estimation procedure and the annealing 

schedule is summarized as follows: 

1. Initialize the data & smoothness constraint equations with the MPEG motion 

vectors. 

2. Fit Gaussians to the overall distributions and calculate the standard deviation 

maxDσ  and maxSσ . 

3. Fit Gaussians to the residuals within [ ]maxmaxmaxmax /,/ SDSD σσσσ −−  and 

calculate the standard deviations minDσ  and minSσ . 

4. Set maxmax / SD σσ  value as initial and minmin / SD σσ  as the final values for the 

minimization algorithm. Initially, the estimate considers all motion vectors as 

inliers. Outliers are gradually introduced by lowering maxmax / SD σσ until the 

minimum allowed values minmin / SD σσ  are reached. 

The MPEG consistency and temporal continuity constraints impose a requirement to 

the derived motion field for being smoothly varying around the MPEG and temporal 

fields, respectively. The robust form of these constraints allows for large deviations 

wherever large inconsistencies with the overall criterion are detected. Thus, the utilizing 

and consequently the structure of these constraints should resemble those of the 

smoothness constraint. Based on this reasoning, we use the same scales for the 

smoothness, MPEG and temporal constraints.  
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To illustrate the behavior of the automatic scale estimation we consider a sequence 

containing a car moving on a highway viewed from a static camera [WSSAE, “road 

surveillance 1” sequence] (Fig. 5.5). The first row presents the uncompressed fifth frame 

and the corresponding DC image, which is appropriately scaled for illustrative purposes. 

The second row shows the estimated vertical velocities (each value specifies a gray 

intensity level) resulting from the annealing schedule using manually set scales for the 

OFCE and the smoothness constraint. Each image is the result of a stage of constant 

scale, where the scale is reduced at subsequent stage. We use the parameter values 

indicated by [Black et al., 1996a] in a one-level pyramid and a four-stage scheme 

(
2

5...
2

18
D ←σ , 

2
03.0...

2
3

S ←σ , 5D =λ , 1S =λ ).  The third row shows the 

results using our method for estimating the scales. The first two stages prove that we are 

Fig. 5.5   1st row: original frame from “road1” sequence and DC image scaled as appropriate for illustrative purposes;   
2d row: stages 1-4 using manually set values for σ (see text); 3 d row: stages 1-4 using automatically calculated values for σ. 
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already close to a “good” solution and therefore we can avoid a scheme with many stages 

that is time consuming. Some artifacts, like the bright regions at the bottom of the image 

of the second row, are also eliminated.  

A more complex sequence is considered in Fig. 5.6. The well-known “coast 

guard” sequence contains two boats moving in opposite directions viewed by a moving 

camera that follows the small boat at first and the larger boat afterwards. Fig. 5.6 shows 

the second frame, where only the small boat is visible. The manual scales are set the same 

as before. The horizontal velocity estimates of our approach become obviously more 

exact around the object of interest (small boat). 

5.2.5 Constraint-Weight Selection 

The derived objective function consists of the data, smoothness, temporal and MPEG 

Fig. 5.6   1st row: original frame from “road1” sequence and DC image scaled as appropriate for illustrative purposes;   
2d row: stages 1-4 using manually set values for σ (see text); 3 d row: stages 1-4 using automatically calculated values for σ. 
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constraints with each of them having its own relative weight λi. We undertook several 

experiments with different values for λi and concluded that the data-smoothness and 

MPEG-temporal ratios should be held constant as in the work of Black et al. [Black et 

al., 1996]. 

The balancing problem turns to be the design of an efficient way, in terms of 

reliable results and time consumption, to turn on or off the individual groups of 

constraints. We use the term “group” to distinct between the data-smoothness and 

MPEG-temporal pairs. We incorporate this distinction, since the data should always be 

used in addition with a non-zero weighted smoothness term in order to make the solution 

recovery well-posed. The MPEG-temporal terms are grouped together because of the 

complementary nature discussed above. 

 In section 5.2.4 we discussed the obvious way to combine the constraints; just add 

them to the objective function and start the minimization procedure. This is done by 

incorporating the 
1
5

=
S

D

λ
λ

 ratio for the data-smoothness pair, as used in Black & 

Anandan [Black et al., 1996]. The weights Tλ  and Mλ for the temporal and MPEG 

constraints, respectively are set to 0.5. In order to employ their complementary nature and 

the advantages it offers, we design a different method to balance the objective function’s 

terms. 

 Let us state once more the notion of outlier and incorporate it in our approach. 

Huber, [Huber, 1981], refers to a robust estimator as an estimator “insensitive to small 

departures from the idealized assumption for which the estimator is optimized”. 

Fractionally large departures for a small number of data points lead to the notion of 

outlier points. Outliers are detected where the final values of the data coherence and 

spatial smoothness terms are greater than the outlier thresholds Dτ and Sτ  ( D2σ  and 

S2σ  for the Lorentzian). The data and smoothness outliers are treated in a different 

way, since they provide different information regarding the present motion between two 

frames. Motion discontinuities are simply outliers with respect to spatial smoothness 

[Black et al., 1996]. We use the data outliers as a criterion to test the initial velocity 

correctness. Hence, we initialize the data constraint with the dense MPEG motion vectors 
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that form the initial solution to our estimation approach. If the result is an inlier, then we 

may expect that the MPEG MV repesents relative well the underlying motion, which 

means that it almost satisfies the OFCE ( 0=++ tyx IvIuI ). In the contrary, if the result 

is an outlier, then we can claim that the initial solution is not a good starting point for the 

minimization procedure that follows. Keeping in mind the previous thoughts, we provide 

the proposed algorithm in pseudocode form in Fig. 5.7 and explain few aspects below. 

The terms “spatialMPEG” and “spatialTEMPORAL” found in the pseudocode represent 

the result of the smoothness constraint when initialized with the dense MPEG MVs and 

the estimated velocities of the previous frame respectively. The term “dataMPEG” 

represents the result of the data constraint when initialized with the dense MPEG MVs. 

Reading carefully the proposed scheme, one can reach the following conclusions: 

1. We use both the spatialMPEG and spatialTEMPORAL outlier check to ensure the 

presence of motion discontinuities (lines 1, 14) 

2. We always check for MPEG MV correctness using the dataMPEG outlier check 

(lines 3, 16) 

3. Generally, we trust the MPEG MV. Hence, if spatialMPEG is an outlier and 

spatialTEMPORAL an inlier, we adopt the MPEG velocity as the final solution 

(lines 27-35) 

4. We do not use the previous solution as a constraint in the objective function 

(temporal constraint)! 

The first three conclusions arise easily from the previous discussion. The last one 

seems strange, because it leaves out a constraint that was described as a powerful one. 

To explain our choice let us consider two consecutive frames, i-1 and i, of a video 

sequence. The temporal field projected to i from i-1 frame results from a previous 

combination of the two motion estimation methods, namely the dense MPEG (block-

matching) and robust optical flow (pixel-based). Hence, the current temporal field 

comes with the influence of previous spatial relations and interactions between the 

two motion fields that may change at this particular instant (frame i). To decouple the 

current computation from previous assumptions regarding the interdependence of 

motion fields, we use the temporal field, wherever appropriate, rather that as a strong 

constraint on the current motion field. 
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1. If  (  spatialMPEG > Sτ ) AND ( spatialTEMPORAL > Sτ ) ) %  if both outliers  
2. { 
3.   if (dataMPEG< Dτ ) % if MPEG is data inlier 
4.   { 
5.    MPEG MV is “correct”. Use it as the solution of the current frame (avoid    
6.    minimization of the objective function) 
7.   } 
8.   else   % if MPEG is data outlier 
9.   { 
10.    minimize the OFCE starting from the previous solution} 
11.   } 
12. else 
13. { 
14.   If  (  spatialMPEG < Sτ ) AND ( spatialTEMPORAL < Sτ ) )  %  if both inliers 
15.   { 
16.    if (dataMPEG < Dτ ) % if MPEG is data inlier 
17.    { 
18.     MPEG MV is “correct”. Use it as the solution of the current frame   
19.     (avoid minimization of the objective function) 
20.    } 
21.   else   % if MPEG is data outlier  
22.   { 
23.    minimize the OFCE starting from the previous solution 
24.   } 
25.   else 
26.   { 
27.    if ( spatialMPEG < Sτ )  % if MPEG is spatial  inlier 
28.    { 
29.     minimize the OFCE starting from the previous solution 
30.    } 
31.    else    % if MPEG is spatial outlier 
32.    { 
33.     MPEG MV is “correct”. Use it as the solution of the current frame  
34.     (avoid minimization of the objective function) 
35.    } 
36.   } 
37. } 

Fig. 5.7  Pseudocode for automatic balancing of objective function’s constraints (see text) 
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Chapter 6 

 

6. Experimental Results 

This chapter shows the results of our optical flow recovery approach on real image 

sequences. Video sequences that are commonly used in the literature are considered and 

the results are analyzed and explained thoroughly. We present the recovered optical flow 

for videos with different motion scenarios imposing different challenges. 

The results were carefully studied in order to present advantages and 

disadvantages of the proposed method. Hence, we present cases where our algorithm 

succeeds or fails. The latter cases are explained and ways to overcome potential problems 

are discussed. Due to lack of ground truth optical flow, the analysis is based on 

qualitative rather than quantitative criteria. 

6.1 Experimental Framework 

We process several video sequences to test the validity of our approach. The most 

representative of them are shown and analyzed below. Most of them are downloaded in 

an uncompressed form from the “working site for sequences and algorithms exchange” 

[WSSAE] that serves as a repository for the call of comparison initiated by the Cost-211 

group. All of them were MPEG compressed using the TMPGEnc encoder that is publicly 

available. For uniformity reasons, they share common characteristics, namely IBBPBB 

GOP structure, normal precision motion search (TMPGEnc option), CIF format 

( pixels) and 30 frames/s rate. 288352×

 As indicated in previous chapters, our approach is an extension of Black & 

Anandan’s work [Black et al., 1996]. We used their software that is publicly available in 

C, [Black, software], as a starting point for software development of our algorithm. For 

the presentation of results, we implemented several programs in MATLAB because of 

the powerful visualization tools it offers. 
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The first illustrated sequence is the “flower garden” (Fig. 6.1). In this sequence 

the tree, flowerbed and row of houses move towards the left due to camera pan, but at 

different velocities. Regions of the scene closer to the camera move faster than the 

regions near the row of houses in the background. This sequence contains large depth 

disparities and hence, significant perspective distortions. It also contains prominent 

motion field spatial discontinuities and occlusions. 

Fig. 6.1 Consecutive frames from the “Flower Garden” sequence illustrating the large depth disparities and the 
occlusions (areas behind the tree) 

The “table tennis” sequence, shown in Fig. 6.2, presents a whole range of 

situations that makes it a challenging stream. Many of the motions of regions of interest 

are discontinuous and rapidly changing (the motion of the ball exceeds 20 pixels between 

frames). The limited intensity variation from frame to frame and the zooming process 

after the 23d frame (approximately) pose additional difficulties. 

Fig. 6.2 Consecutive frames from the “Table Tennis” sequence illustrating the rapid movement of the 
ball that yields a discontinuous motion field and occluded areas below and above. 

The “coast guard” sequence, Fig. 6.3, shows a complex scene with different 

objects present. Two boats are moving in opposite directions in a river, while the camera 

pans, following the smaller boat initially and then the larger one. The coast, covered by 
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trees and rocks, and the wavy river are present throughout the sequence. The objects’ 

motions are small in magnitude and make the distinction between them rather difficult. 

Fig. 6.3 Consecutive frames from the “Coast Guard” sequence illustrating the quite small motion 
present in the scene. 

6.2 Results & Discussion 

In chapter 5, we attempted to make an initial presentation of the results by applying our 

algorithm to the “flower garden” sequence. Improvements of the optical flow using the 

MPEG and temporal constraints in both a linear and selective way were presented. 

Hence, in this chapter we make a brief illustration of optical flow results and continue 

with problems rising from the other sequences. 

6.2.1 “Flower Garden” Sequence 

The first row of Fig. 6.4 shows the uncompressed third frame of the video sequence and 

the corresponding DC image. The second row shows the recovered optical flow field by 

the OFCE and the third illustrates the dense MPEG field. The additional information to 

the figures of the previous chapter is the zoomed regions beside them. The thin black box 

encloses a region, where occlusion takes place: The tree is moving to the left in the 

foreground covering or uncovering regions of the background, namely the house, the 

trees and the flower bed. The occlusion in the specified region occurs due to the covered 

tree in the background (its branches can be seen in the uncompressed frame shown in Fig. 

6.4). The OFCE minimization produces false MVs as shown by the different directions of 

neighboring vectors. On the contrary, the MPEG motion field is correct at the occluding 

region. Fig. 6.5 illustrates the solution recovered by the additive and selective 
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combination of the temporal and MPEG constraints. The direction of the velocity vectors 

is the expected at both sides of the motion discontinuity. In general, the selective 

combination provides better results in terms of velocity magnitude and direction as 

illustrated by the optical flow field overlaid on the DC image.  

Fig. 6.4 First row:  original frame 3 and corresponding DC image; second row: optical flow 
by OFCE and zoom on occlusion; third row: optical flow by dense MPEG and zoom on 
occlusion (see text)
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Fig. 6.5 First row: optical flow by TEMPORAL+MPEG and zoom on occlusion; 
second row: optical flow by LAMDA and zoom on occlusion (see text)

 Video streams contain hundreds of frames and it is therefore difficult to present 

overall results using images. Hence, in an attempt to provide a qualitative assessment of 

the results, we could say that the algorithm works well for most frames of the sequence 

under investigation. Two main types of motion are present: the foreground moving tree 

(local motion) and the camera pan (global motion). In most cases, these two motions are 

easily distinguishable.  The MPEG motion field is more accurate at the motion edges, as 

illustrated by the above example, while the OFCE field recovers velocity information on 

smooth areas, like the flowerbed. The selective combination of the constraints, which was 

analyzed in the previous chapter, seems to work better in efficiently combining both 

advantages of the MPEG and OFCE fields. 
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6.2.2 “Table Tennis” Sequence 

Considering the first frames of this sequence, we investigate the motion of objects of 

interest when the camera has a fixed focus depth, focusing on the player’s arms, and 

when zooming out. Fig. 6.6 shows four different optical flow fields superimposed on the 

11th DC image of the sequence. As illustrated by the two consequent DC images, the ball 

moves very fast and therefore undertakes a large motion. The arm is moving upwards 

performing a relative small motion. 

 The optical flow recovered by the OFCE seems a little bit “messy”, especially 

around the ball. The motion blurring due to the large movement of the ball in conjunction 

with the homogenous background gives spurious derivatives and produces many false 

motion vectors. The distinction between the ball and the bat is visually impossible. As 

expected, the dense MPEG field is more accurate at the motion edges, but provides 

inconsistent information for the moving homogenous regions of the arm. The 

complementary combination of the OFC, MPEG and TEMPORAL constraints produces a 

better field than the OFCE and dense MPEG individually in terms of vector direction and 

homogenous regions’ velocity assignment. The selective combination of constraints 

generates the best field by achieving an improvement on the velocities’ direction and 

magnitude. The small motion of the bat is clear and can be distinguished from the ball’s 

motion. The latter remark is better illustrated by zooming on the region containing the 

ball and the bat, as illustrated in Fig. 6.8. 

 An interesting part of the sequence is the zooming out effect performed 

approximately after the 23d frame. The camera zooms out, but remains focused on a 

region between the ball and the bat. The challenge is to distinguish the movements of the 

ball and the arm without being confused by the global change of the motion field. Frames 

36 and 37 of the sequence are shown in Fig. 6.7. The camera zooms out, the ball is 

moving downwards and the left part of the bat makes a slightly larger movement than the 

arm. Fig. 6.6 and Fig. 6.8 illustrate the optical flow obtained by OFCE, dense MPEG, the 

linear the selective combination respectively in a row-wise manner. Considering the 

global velocity distributions shown in Fig. 6.7, we confirm previous stated remarks. The 

OFCE recovers almost correctly the zoom pattern in homogenous regions, like the wall 

behind the player, but fails to distinguish the objects’ movements. The dense MPEG field 
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is more accurate at the motion edges and recovers partially the zoom pattern in 

homogenous regions. The movement of the objects of interest is well recovered. The 

table edge that can be considered as a moving edge, because of the zoom out, produces 

artifacts in the resulting optical flow as can be seen by the messy motion vectors in terms 

of magnitude and direction around this region (severe effect of aperture problem on 

edges). The linear combination of the constraints generates the worse optical flow. The 

zoom pattern is hardly observed, while no distinction between moving objects exists. The 

careful examination of the results after the 23d frame, where zooming out begins, reveals 

the inability of the linear combination to give a good solution. The temporal constraint is 

possibly responsible for this. The constraint it imposes, namely the similarity between the 

previous and the current solution, cannot handle the abrupt change between static and 

change of focus. This irregularity produces undesirable results on the final optical flow. 

The selective constraint combination generates optical flow that is smoother than the 

MPEG and more accurate in representing motion than the OFC field. The artifacts around 

the table edge, present in the MPEG field, are almost smoothed out and many “gaps” in 

homogenous regions are filled in with motion vectors that are in accordance with the 

global motion pattern. The zoomed region of interest in Fig. 6.9 illustrates the previous 

facts. The point of focus, the center of the zoom pattern, is relative clear at the last case. 

The upward movement of the bat is not clearly represented, but can still be distinguished. 
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Fig. 6.6 10th & 11th DC images (scaled) of the “Table Tennis” sequence. Optical flow field for the 11th frame (scaled). Row-
wise: OFCE, dense MPEG, linear combination and selective combination
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Fig. 6.7 36th & 37th DC images (scaled) of the “Table Tennis” sequence. Optical flow field for the 37th frame (scaled). Row-
wise: OFCE, dense MPEG, linear combination and selective combination 
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Fig. 6.8 Frame 11. row-wise: OFCE, dense MPEG, linear combination and selective combination. The 
distinction between the ball and the bat is better at the latter case (see text)

Fig. 6.9 Frame 37. row-wise: OFCE, dense MPEG, linear combination and selective 
combination (see text) 
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6.2.3 “Coast guard” Sequence 

The moving objects of interest in this sequence are the two boats. During the first frames 

the camera pans, following the smaller boat. Hence, the relative motion of the small boat 

is expected to be very small in magnitude.  

 The global optical flow of this sequence cannot be clearly illustrated in paper due 

to the small amplitude of the motion vectors. To make the presentation easier, in Fig. 

6.11 and Fig. 6.12 we present the same zoomed region for frames 35 and 52, showing the 

boats and the superimposed motion vectors, and the global optical flow field in terms of 

magnitude. Both frames are shown in Fig. 6.10. The challenge here is to distinguish the 

boats without being affected by the global motion pattern (camera pan). 

Fig. 6.10 Frames 35 & 52 of the “coast guard” sequence. First row: 
uncompressed frames. Second row: DC images

 The optical flow obtained by the OFCE is overall smooth, as expected due to the 

camera pan. The motion vectors assigned to the two moving boats do not represent the 

correct motion, as can be seen by the spurious directions in the images at the first row of 

Fig. 6.10. The reason is probably the non-informative temporal derivative computation, 

because of the small temporal variation from frame to frame (short objects’ motion). The 
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dense MPEG field provides a more distinct representation of the three motions present in 

the scene. It assigns almost zero velocities to the small boat so that one can distinguish it 

from the global pan. The motion of bigger boat is correctly recovered in terms of 

magnitude and direction. As expected, the MPEG field suffers from motion artifacts in 

homogenous regions, as illustrated by “gaps” and intensity discontinuities in the second 

row of Fig. 6.11. The two approaches we propose provide almost similar results with the 

selective combination being a little bit more accurate. The global motion pattern is 

correctly assigned to the background, as shown by the smooth magnitude on the 

background. 

 The previous remarks hold the same after seventeen frames, namely in frame 52 

of the sequence. Fig. 6.12 illustrates the results. The OFCE adequately recovers the 

background motion, while the dense MPEG field represents well the motion edges. Both 

of our approaches combine efficiently the previous characteristics and generate velocity 

fields closer to the true ones. The selective combination is again more accurate at motion 

discontinuities, while the additive one tends to oversmooth the moving edges. 
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Fig. 6.11 Frame 35. first column: zoomed region with superimposed motion vectors for OFCE, dense 
MPEG, linear combination and selective combination respectively. Second row: corresponding 
velocity magnitudes of overall optical flow.
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Fig. 6.12 Frame 52. first column: zoomed region with superimposed motion vectors for OFCE, dense 
MPEG, linear combination and selective combination respectively. Second row: corresponding 
velocity magnitudes of overall optical flow. 87



 

 

Chapter 7 

 

7. Discussion & Further Work 

In the first three chapters, we focus on an introduction of the problem and a review of 

related work in order to get a grip of the current trends in optical flow estimation. In the 

last three chapters, we introduce the robust estimation framework, incorporate it in our 

work and propose our approach to dense optical flow estimation in the compressed 

domain. In this chapter, we give an evaluation of our ideas and attempt to extend them in 

order to serve as a starting point for future research. 

7.1 Robust Estimation Framework 

For many years, the Gaussian assumption serves as a valuable tool for many scientific 

problems, but the evolution of technology is followed by the need for increasingly 

complex models to represent underlying distributions. The Gaussian model is still a very 

important tool for mathematical analysis, but we should be able to cope efficiently with 

possible deviations from it, as is generally the case. Hence, we adopted the robust 

estimation framework for recovering optical flow that gives us the ability to introduce 

outliers and use them in an efficient way to represent motion. 

 Many researchers use robust statistics tools in order to develop algorithms that 

remain insensitive to violations of motion assumptions occurring mainly at motion 

discontinuities. We adopted the framework proposed by Black & Anandan [Black et al., 

1996], since it provides a direct way to improve the performance of standard least-

squares estimation, reduces smoothing across motion boundaries, detects outliers 

(violations of motion constraints) and copes with multiple motions.  
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7.2 OFCE & Additional Motion Constraints 

The standard regularization techniques minimize an objective function consisting of a 

data and a regularizing smoothing term. We introduce two additional constraints, namely 

the temporal continuity and the MPEG consistency. The temporal constraint has been 

studied in the literature and is a powerful tool for incremental motion estimation. We 

incorporate it in to two different ways: as a mathematical constraint in the objective 

function and as check for the presence of motion discontinuity. The MPEG motion field 

is used both as initial solution field and as a constraint in the objective function. In this 

way, we combine the two different motion estimation approaches, namely the pixel-based 

regularization and the MPEG block matching techniques into a single approach. 

 We examined several experiments using the constraints in a linear and selective 

way. A part of them is illustrated in chapters 5 and 6. Most of the recovered optical flow 

fields inherent the advantages of both the MPEG and OFC motion estimation methods. 

The improvement achieved by the proposed formulation was mainly illustrated in chapter 

5 for sequences exhibiting different motion patterns. The lack of ground truth leads us to 

evaluate the results in a qualitative way by looking carefully the recovered optical flow 

and the evolution over time. It is the incremental nature and the velocity fields over a 

whole sequence that cannot be thoroughly presented in the form of static images. 

 Generally, the results are sufficiently good for the cases we tested. Nevertheless, 

our approach does not recover optical flow equally well for all frames of a video 

sequence. Occlusions/disocclusions, camera zoom/pan etc, state difficulties that may 

make the algorithm corrupt under specific situations. Such problems are introduced to all 

video segmentation or analysis approaches. The limits to our approach come mainly from 

the initial information we use, namely the DC images and the MPEG motion field. The 

use of DC images saves computational time due to the small spatial extend, but 

introduces strong smoothness on the intensity image. Hence, relative small moving 

objects may disappear or intermix with the background making the correct motion 

recovery impossible. Similar problems exist even for large moving objects. If a moving 

edge lies inside an MPEG block ( 88×  pixels) then the DC averaging may introduce large 

inaccuracies in the final intensity field, which influence negatively the OFC motion 
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estimation. On the other hand, the possible poor quality of MPEG velocity vectors and 

their sparse distribution pose additional difficulties to the accurate solution recovery.  

Our method provides a framework for combining information from different 

sources available to produce spatiotemporal consistent optical flow field that represents 

the true motion field as accurate as possible at this level of resolution (DC resolution). It 

combines efficiently both motion estimation methods, compensates for their possible 

artifacts, and generates an improved MPEG optical flow field. Motion segmentation can 

be seen as a two-stage problem: the first stage is the low level processing involving the 

extraction of motion information; the second level classifies or clusters previous 

information in an intelligent way. Hence, our algorithm may provide the platform (low 

level processing) for more efficient and accurate segmentation or analysis (high level 

processing) of the velocity field that is generated directly from compressed domain 

features. 

7.3 Further Work 

The work presented in this thesis is concerned with dense motion estimation (at the level 

of blocks) from compressed domain data. Although good results are obtained, some open 

issues remain. These are outlined below with possible indications on how they might be 

solved. 

Accuracy on motion edges is a hard problem for many motion estimation 

techniques. The combination of gradient and block matching methods we attempt 

alleviates moving edge artifacts, but further improvement is always desirable. One 

possible approach worth of further investigation is the incorporation of intensity 

information to generate an explicit boundary map. Intensity can be easily imported in our 

robust estimation framework in a form of a functional biasing the objective function. 

Additionally, we could use intensity information in the selective combination of 

constraints to ensure the presence of a moving edge and provide a more efficient way to 

tune the developed algorithm. 

The spatial information as used in the algorithm requires the computation of 

partial derivatives. Derivative calculation has seldom received proper attention in optical 

flow estimation. Crude derivative estimators are widely used. Consequently, OFC 
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methods may break down near motion boundaries due to non-robust derivative 

estimation. Pointing out this limitation, we could use a more robust method to calculate 

high-quality derivatives like the one of Ye & Haralick. In [Ye et al., 2000] they calculate 

derivatives from an explicit 3D facet model and discuss on the achieved improvements.  

A natural extension of our method would be towards the implementation of robust 

regression using affine models. The goal is to recover the affine parameters of a motion 

model that minimize a criterion similar to that used for the robust regularization approach 

we adopt. Black & Anandan in [Black et al., 1996] propose such an approach and present 

several results. We could easily extent their work by incorporating the constraints and the 

ideas developed in the previous chapters and apply them in the compressed domain. 

The combination of MPEG and temporal motion fields seems promising and is 

worth of further analysis. Weaknesses of our approach may be eliminated by a finer 

combination. Hard to face cases, like occlusion/disocclusion, illumination shading, 

appearance of new object etc. may be handled more efficiently with appropriate MPEG-

temporal information fusion. Additionally, scene changes may be correctly located at 

frames where the temporal field relating the previous to the current frame deviates as an 

overall distribution from that of the MPEG field that relates the current to the next frame. 

 Our approach was shown to perform well over a range of different motion 

scenarios.  Nevertheless, a complete evaluation can only come from extended testing and 

application of the algorithm. The basis of our work, namely the robust motion estimation 

framework in a multiresolution scheme, has been widely studied and established in the 

literature and seems to achieve good results. Its application in the compressed domain has 

not been fully explored yet. Hence, we hope that our work can serve as a basis to develop 

further the proposed ideas and incorporate new and powerful motion constraints in the 

compressed domain. As major areas of application, we see (a) the direct motion 

parameter estimation from compressed video and (b) the video segmentation in the 

compressed domain. 
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